Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Date
Availability
1-1 of 1
Simran Thandi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 623-634, October 15–18, 2024,
Abstract
View Paper
PDF
MarBN steels, originally developed by Professor Fujio Abe at NIMS Japan, have undergone significant advancement in the UK through a series of government-funded collaborative projects (IMPACT, IMPEL, INMAP, IMPULSE, and IMPLANT). These initiatives have achieved several major milestones, including operational power plant trials, full-scale extruded pipe production, matching welding consumable development, and most notably, the creation of IBN-1—a new steel demonstrating 30-45% higher creep strength than Grade 92. However, like other creep strength-enhanced ferritic steels, IBN-1 shows reduced creep ductility under the lower stress conditions typical of operational use. Since adequate creep ductility is essential for component damage tolerance and effective in-service monitoring, this study investigates the effects of an alternative normalizing and tempering heat treatment on cast IBN-1. The research presents creep rupture test results showing improved ductility and analyzes the microstructural mechanisms responsible for this enhancement.