Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Scott Lockyer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 623-634, October 15–18, 2024,
Abstract
View Paper
PDF
MarBN steels, originally developed by Professor Fujio Abe at NIMS Japan, have undergone significant advancement in the UK through a series of government-funded collaborative projects (IMPACT, IMPEL, INMAP, IMPULSE, and IMPLANT). These initiatives have achieved several major milestones, including operational power plant trials, full-scale extruded pipe production, matching welding consumable development, and most notably, the creation of IBN-1—a new steel demonstrating 30-45% higher creep strength than Grade 92. However, like other creep strength-enhanced ferritic steels, IBN-1 shows reduced creep ductility under the lower stress conditions typical of operational use. Since adequate creep ductility is essential for component damage tolerance and effective in-service monitoring, this study investigates the effects of an alternative normalizing and tempering heat treatment on cast IBN-1. The research presents creep rupture test results showing improved ductility and analyzes the microstructural mechanisms responsible for this enhancement.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 348-359, October 21–24, 2019,
Abstract
View Paper
PDF
Extensive research and development has been undertaken in the UK on MarBN steels. These were first proposed by Professor Fujio Abe from NIMS in Japan. Within the UK, progress has been made towards commercialisation of MarBN-type steel through a series of Government funded industrial collaborative projects (IMPACT, IMPEL, INMAP and IMPULSE). As part of the IMPACT project, which was led by Uniper Technologies, boiler tubes were manufactured from the MarBN steel developed within the project, IBN1, and installed on the reheater drums of Units 2 and 3 of Ratcliffe-on-Soar Power Station. The trial tubes were constructed with small sections of Grade 91 tubing on either side of the IBN1 to allow direct comparison after the service exposure. This is the world’s first use of a MarBN steel on a full-scale operational power plant. In September 2018 the first tube was removed having accumulated 11,727 hours operation and 397 starts. This paper reports microstructural and oxidation analysis, that has been undertaken by Loughborough University as part of IMPULSE project, and outlines future work to be carried out.