Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Satoru Kobayashi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 441-448, October 15–18, 2024,
Abstract
View Paper
PDF
Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its strengthening phase γ"-Ni3Nb. Aiming at understanding and improving creep properties of 718-type alloys, we investigated creep behaviors of alloy 718 and alloy Ta-718 where different types of γ" phases, Ni3Nb and Ni3Ta, were precipitated, respectively. Creep tests were conducted at 700 °C under stress conditions of 400 and 500 MPa for the two alloys in aged conditions. It was found that while the minimum creep rates were comparable in the two alloys, the creep rate acceleration was lower in alloy Ta-718 than in alloy 718 under the creep conditions studied. Microstructural observations on the specimens before and after the creep tests suggested that the γ" precipitates were distinguishably finer in alloy Ta-718 than in alloy 718 throughout the creep tests. The formation of planar defects and shearing of γ" precipitates occurred frequently in the alloy 718 specimen. The observed creep deformations were discussed in terms of the critical resolved shear stress due to shearing of γ" particles by strongly paired dislocations.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 90-95, October 21–24, 2019,
Abstract
View Paper
PDF
The formation of periodically arrayed rows of very fine Fe 2 Hf Laves phase particles was recently found in 9 wt. % chromium ferritic matrix through interphase precipitation along a reaction path of δ-ferrite → γ-austenite + Fe 2 Hf with a subsequent phase transformation of the γ phase into the α-ferrite phase. One of the problems on the formation of the fine Laves phase dispersion is a poor heat treatability; the interphase precipitation (δ-Fe→γ-Fe+Fe 2 Hf) is competitive with the precipitation of Laves phase from the δ phase in the eutectoid-type reaction pathway (δ→δ+Fe 2 Hf). In the present work, the effect of supersaturation on the precipitation of Laves phase from δ phase (δ→δ+Fe 2 Hf) and the δ→γ transformation in the reaction pathway was investigated by changing the Hf and Cr contents. The results obtained suggest that it is effective to have a high supersaturation for the precipitation of Laves phase and an adequately high supersaturation for the δ→γ transformation at the same time in order to widen the window of the interphase precipitation
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 391-397, October 21–24, 2019,
Abstract
View Paper
PDF
Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature capability of the γ′′ strengthened Ni-based wrought alloys. In the base alloy of Ni-22Cr-16Fe-3.5Nb, the δ phase precipitated at the grain boundaries of the matrix phase in a platelet form by continuous precipitation mode at temperatures above 1273K (1000°C) but in a lamellar morphology by discontinuous precipitation mode below that temperature. The boundary temperature where the continuous/discontinuous precipitation mode changes was raised by addition of 1 % Ti and lowered by addition of 5% Mo. The increase in the boundary temperature by Ti addition can be considered to have occurred by an increase in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous precipitation with respect to the discontinuous precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1418-1428, October 21–24, 2019,
Abstract
View Paper
PDF
In the present study, the precipitation kinetics of topologically close-packed (TCP) Fe 2 Nb Laves and geometrically close-packed (GCP) Ni 3 Nb phases is studied quantitatively in experimental alloys with different Ta / Nb+Ta ratio, to clarify the mec4hanism of the Ta effect. The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates the formation kinetics of the precipitates at grain boundaries, as well as γ“-GCP phase within grain interiors, due to increased supersaturation by Ta addition. Besides, Ta retards the transformation kinetics of metastable γ“-Ni 3 Nb to stable the δ-Ni 3 Nb phase. The results indicate that Ta decreases the driving force for the transformation of the δ-GCP phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1436-1445, October 21–24, 2019,
Abstract
View Paper
PDF
Strengthening of Ni-based superalloys is in principle designed using GCP (Geometrically Close-packed phase) of Ni 3 Al-γ' (L1 2 ). However, game-changing microstructural design principle without relying on γ' phase will be needed for further development of the alloys. We are currently constructing a novel microstructure design principle, using thermodynamically stable TCP (Topologically Close-packed phase) for grain boundaries, together with GCP other than γ' phase for grain interiors, based on grain boundary precipitation strengthening (GBPS) mechanism. One of the promising systems is Ni-Cr-Mo ternary system, where TCP of NiMo (oP112) phases, μ (hR13) and P (oP56), together with GCP of Ni 3 Mo (oP8) and Ni 2 Cr (oP6) exists. In this study, thus, phase equilibria among A1 (fcc)/TCP/GCP phases in Ni-Cr-Mo and Ni-Cr-W systems have been examined at temperature range from 973 K to 1073 K, based on experiment and calculation. In Ni-Cr-Mo system, Ni 2 (Cr, Mo) with oP6 Pearson symbol, which is stable at about 873 K in Ni-Cr binary system, is formed to exist even at 1073 K. oP6 phase is coherently formed in A1 matrix with a crystallographic orientation of {110} A1 // (100) oP6 , <001>Α1 // [010]oP6, indicating GCP at composition range around Ni-15Cr-15Mo as island. In Mo-rich region there is Α1/NiMo/oP6 three-phase coexisting region, whereas another three-phase coexisting region of Α1/P/oP6 exists in Cr-rich region. Based on vertical section, it is possible to design microstructure with TCP at grain boundaries, together with oP6 phase within grain interiors by two-step heat treatment.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 293-303, October 22–25, 2013,
Abstract
View Paper
PDF
Microstructural change of 10 % Cr steel trial forgings subjected to different heat treatment conditions which aim to improve the creep rupture strength and microstructural stability during creep was investigated. Creep rupture strength of the forging subjected to the quality heat treatment with the austenitizing temperature of 1090° C is higher than that of the forging solution treated at 1050°C, however, the difference of creep rupture strength is reduced in the long-term region around 40,000 h. Decrease in creep rupture ductility of the forging until 43,300 h is not observed. Progress of the martensite lath recovery in the forging solution-treated at 1090°C is slower than that in the forging austenitized at 1050°C. Higher temperature solution treatment suppresses the recovery of lath structures. Formations of Z-phase are found in the specimens creep-ruptured at 37,300 h in the forging solution-treated at 1050°C and at 43,400 h in the forging austenitized at 1090°C. Z-phase precipitation behavior in this steel is delayed in comparison with the boiler materials, regardless of austenitizing temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 637-647, October 22–25, 2013,
Abstract
View Paper
PDF
Recovery of microstructure and void formation were investigated in creep-ruptured specimens of ASME Gr. T91 steels to understand the cause of loss of creep rupture ductility in the long-term creep condition and its heat-to-heat variation. The specimens studied were two heats (MGA, MGC) of Gr. T91 steels creep-ruptured at 600 °C under the stress conditions of 160-80 MPa. The reduction of area at rupture (RA) was 55% for MGA, but 83% for MGC in the long-term condition (under the creep stress of 80 MPa), while RA was higher than 80 % for the two heats in the short-term conditions (under the creep stresses above 100 MPa). In both heats, equiaxed grains were observed in the vicinity of ruptured surface in the long-term condition, indicating that recovery and recrystallization occurred extensively in the creep condition, while grains were elongated in the short-term conditions. In the uniformly deformed regions with a small area reduction in the long-term crept specimens, recovered and recrystallized grains were observed in the limited region close to high angle grain boundaries in MGA, while they were extended into grain interiors in MGC. In the long-term creep conditions two types of voids were observed: fine ones with a diameter below 1 μm and coarse ones with a diameter from 2 μm up to 50 μm. Fine creep voids were found to grow with necking in MGA while they neither nucleated nor grew with necking in MGC. Coarse creep voids increased in size and in number with necking in both heats and were larger and denser in MGA than in MGC.