Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Saeed Rahmati
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 235-240, May 24–28, 2021,
Abstract
View Paper
PDF
In this study, a new physically-based finite element approach is proposed to model and predict the superficial oxide layer removal and the occurrence of localized metallic bonding during particle impacts. The process physics, based on explosive welding theory and experiments, and method implementation is presented. Prediction of critical velocity of copper is obtained and compared to experimental data to validate the model. Moreover, the model is also able to show the bonding locations at the interface between particles and substrate. The predicted bonding locations are consistent with experimental data from literature for several metals.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2020) 178 (5): 56–60.
Published: 01 July 2020
Abstract
View article
PDF
Increasing and controlling particle impact temperature is proving to be beneficial for both process performance and coating properties.