Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
S.H. Lee
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2009, ISTFA 2009: Conference Proceedings from the 35th International Symposium for Testing and Failure Analysis, 193-197, November 15–19, 2009,
Abstract
View Papertitled, Case Study: Failure Analysis of Functional Shmoo Hole with Laser Voltage Probing
View
PDF
for content titled, Case Study: Failure Analysis of Functional Shmoo Hole with Laser Voltage Probing
Innovations in semiconductor fabrication processes have driven process shrinks partly to fulfill the need for low power, system-on-chip (SOC) devices. As the process is innovated, it influences the related design debug and failure analysis which have gone through many changes. Historically for signal probing, engineers analyzed signals from metal layers by using e-beam probing methods [1]. But due to the increased number of metal layers and the introduction of flip chip packages, new signal probing systems were developed which used time resolved photon emission (TRE) to measure signals through the backside. However, as the fabrication process technology continues to shrink, the operating voltage drops as well. When the operating voltage drops below 1.0V, signal probing systems using TRE find it harder to detect the signals [2]. Fortunately, Laser Voltage Probing (LVP) technology [3] is capable of probing beyond this limitation of TRE. In this paper, we used an LVP system to analyze and identify a functional shmoo hole failure. We also proposed the design change to prevent its reoccurrence.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 472-484, October 25–28, 2004,
Abstract
View Papertitled, High-Temperature Oxidation Behavior of X20 CrMoV 12.1 Boiler Tube Material
View
PDF
for content titled, High-Temperature Oxidation Behavior of X20 CrMoV 12.1 Boiler Tube Material
The oxidation behavior of X20 steel in steam environments was studied isothermally between 580-640°C. Initially, the magnetite (Fe 3 O 4 ) phase formed on the surface. With increasing time and temperature, the hematite (Fe 2 O 3 ) phase formed. The oxide scale consisted of an inner layer divided from an outer layer by the original metal surface. A Cr-rich area was observed beneath the original metal surface. Oxide scales formed on a serviced boiler tube at 540°C for 7000h were also analyzed and found to be similar in oxide phase composition to those formed on X20 steel under laboratory conditions. However, differences existed in the microstructure and distribution of the Cr-rich area within the oxide scale. It was concluded that the oxidation mechanism under field conditions differs from that under laboratory conditions.