Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
S.C. Jones
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 443-446, May 15–18, 2006,
Abstract
View Paper
PDF
Use of graded coatings is a well-known strategy for creating materials with continuously changing physical properties. The stiffness (modulus of elasticity) and density of flyer plates used in light gas gun testing directly influences the shape of the shock wave produced by the flyer plate. Many strategies exist for creating flyer plates that produce variable shock profiles, including stacked foils and powder compaction. We have investigated graded thermal spray coatings as an alternative method for creating flyer plates that produce variable shock profiles. An initial proof of concept demonstration has been completed by air plasma spraying a graded coating of Cu & Al onto a copper substrate. This composite flyer plate was tested in a light gas gun to demonstrate that a non-linear shock profile can be created. The plasma spray strategies used to create a group of similar graded density impactors are discussed. Initial light gas gun testing shows that graded density impactors can be created using thermal spray coatings.