Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
S. Murata
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Effect of Particle Size Range on Thermally Grown Oxide Scale Formation on Vacuum Plasma Sprayed CoNi- and CoCrAIY Coatings
Available to Purchase
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 948-953, May 14–16, 2007,
Abstract
View Papertitled, Effect of Particle Size Range on Thermally Grown Oxide Scale Formation on Vacuum Plasma Sprayed CoNi- and CoCrAIY Coatings
View
PDF
for content titled, Effect of Particle Size Range on Thermally Grown Oxide Scale Formation on Vacuum Plasma Sprayed CoNi- and CoCrAIY Coatings
The effect of particle size range on oxidation behavior was investigated according to exposure time in isothermal oxidation condition. Emphasis was placed upon oxygen content, porosity, and oxide scale formation. Commercially available CoNi- and CoCrAlY powders of several different particle size ranges were vacuum-plasma sprayed on a nickel alloy substrate. The results show that the isothermal degradation of coatings is considerably influenced by the particle size distribution. It can be clearly observed that a remarkable increase in the oxygen content in the as-sprayed coating occurred with a decrease in the mean particle size. But after thermal exposure, the difference of the oxygen contents between the smaller and larger particle coatings is decreased. The distribution of particle size plays the important role of porosity than only the mean particle size. The powder which has the widest range and sample variance leads to make good porosity inside coatings during the deposition process.