Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-10 of 10
S. Liu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 299-305, May 4–6, 2022,
Abstract
View Paper
PDF
Applications in thermal and kinetic spraying increasingly aim for coating of parts with complex geometries. So far, respective robot programming for the required path during deposition is usually adjusted individually in time-consuming procedures. Thus, it is essential to develop methods that allow a fast adaptation to part geometries and production conditions as well as possible quality control. To tackle these problems, this work addresses novel strategies for robot programming and post-spray analyses. The design of the method and workflow follows routes of smart manufacturing and should enable fast and accurate implementation into spray procedures. Here, the developed application can handle complex parts of arbitrary geometry in the form of CAD files. Supported features include (i) cutting the objects according to the object boundary, (ii) creating self-intersecting curves, (iii) generating a set of index-sequence-based spatial discrete points and (iv) reordering the discrete points to generate adaptive paths. Robot offline programming allows for process simulation, analysis and optimization of the robot kinematics. By optical scanning profilometry, the layer-by-layer deposit build-up could be monitored for quality control, as well as for the determination of the final overall coating thickness. The entire procedure was tested by cold spraying onto a complex workpiece, validating the capability of the proposed strategy. Based on the universal layout of the applied methods, the strategies can also be applied for thermal spraying in general, considering individual boundary conditions. With respect to cold spraying, the implementation framework of this study provides a good basis for part repair and additive manufacturing.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 437-446, May 4–6, 2022,
Abstract
View Paper
PDF
In this work, a novel HVOAF process fueled with ethanol was employed to prepare NiCoCrAlYTa coatings on AISI 304 stainless steel substrate. To be able to add compressed air into the torch, it was designed to add a second-stage combustion chamber. Thereafter, investigations were carried out to determine the influence of different compressed air flow rates on the evolution of the microstructure and properties of the resulting NiCoCrAlYTa coatings. The phase composition, microstructure, porosity, microhardness, bond strength and wear resistance of the as-sprayed coatings have been studied in detail. The results reveal that the compressed air flow rate has a substantial effect on the coating's microstructure. The addition of compressed air also contributes to reduce the degree of oxidation of the coating, which could be attributable to a decrease in the temperature of the flying particles and an increase in their velocity. Although the use of compressed air diminishes the coating's bonding strength, it still has some elevated strength. Furthermore, the injection of compressed air improves the coating's sliding wear resistance dramatically. SEM and EDS were used to investigate the sliding wear mechanism of the coating. Detailed correlation between the compressed air flow rates and the coating properties are elaborated to identify the coatings exhibiting optimum performances.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
Abstract
Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding, wherein an external gas is supplied to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems, quality control, and process applications of ESW and EGW are also discussed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005571
EISBN: 978-1-62708-174-0
Abstract
Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure, and properties. It provides information on the inclusions that form as a result of reactions between metallic alloy elements and nonmetallic tramp elements, or by mechanical entrapment of nonmetallic slag or refractory particles. The article reviews the considerations of flux formulation during shielded metal arc welding and flux cored arc welding (FCAW). It describes the types of fluxes used for submerged arc welding and FCAW as well as five essential groups of flux ingredients and their interactions.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 554-570, August 31–September 3, 2010,
Abstract
View Paper
PDF
Critical sections of steam plants and heat-recovery steam generators require materials with enhanced properties such as 9Cr-1Mo steel. Ensuring compliance with specifications for heat treatment, chemical composition, contamination limits, and joint design is crucial to prevent premature failures. This study describes the development of a user-friendly, multi-property nondestructive sensor arrangement to qualify heat-treated 9Cr-1Mo steel. Experimental results demonstrate that correlations between thermal heat treatment and electronic, magnetic, and elastic measurements can determine if T91 steel achieves the necessary microstructure and properties for service. Additionally, rejected parts can be assessed for microstructural issues causing unacceptable properties. The techniques utilize a common electronic setup with different sensors, requiring calibration for specific NDE systems and sensor setups, high-speed data acquisition, and frequency analysis (FFT). Further development on crept and welded samples is recommended to enhance NDE practices for in-service T91 steel conditions.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001339
EISBN: 978-1-62708-173-3
Abstract
Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing hardenability, promoting porosity, and producing inclusions. It proposes basicity index for welding as a measure of expected weld metal cleanliness and mechanical properties. The article discusses alloy modification in terms of slipping and binding agents, slag formation, and slag detachability. It reviews the types of fluxes for different arc welding processes, such as shielded metal arc welding (SMAW), flux-cored arc welding (FCAW), and submerged arc welding (SAW).
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001463
EISBN: 978-1-62708-173-3
Abstract
This article discusses the metallurgical aspects of underwater welds. It describes the microstructural development, which mainly includes three types of ferrite associated with low carbon steel weld metal: grain-boundary ferrite, sideplate ferrite, and acicular ferrite. The article explains the factors that affect heat-affected zone (HAZ) cracking. These include hydrogen from the weld pool, microstructures that develop in the HAZ, and stress levels that develop in the weld joint. The article describes the welding practices that can reduce residual stresses. It explains the effect of water pressure on the formation of porosity in underwater gravity welding. The article concludes with a discussion on the practical applications of underwater welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
Abstract
Electroslag welding (ESW) and electrogas welding (EGW) are two related procedures that are used to weld thick-section materials in the vertical or near-vertical position between retaining shoes. This article discusses the fundamentals of the electroslag process in terms of heat flow conditions and metal transfer and weld pool morphology. It presents constitutive equations for welding current, voltage, and travel rate for ESW. The article describes the metallurgical and chemical reactions in terms of fusion zone compositional effects, weld metal inclusions, solidification structure, and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
Abstract
This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold cracking. The article addresses the basic principles that affect the weldability of carbon and low-alloy steels. It outlines the characteristic features of welds and the metallurgical factors that affect weldability. It describes the common tests to determine steel weldability. There are various types of tests for determining the susceptibility of the weld joint to different types of cracking during fabrication, including restraint tests, externally loaded tests, underbead cracking tests, and lamellar tearing tests. Weldability tests are conducted to provide information on the service and performance of welds. The major tests that are discussed in this article are weld tension test, bend test, the drop-weight test, the Charpy V-notch test, the crack tip opening displacement test, and stress-corrosion cracking test.