Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
S. Kayali
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 77-83, November 14–18, 1999,
Abstract
View Paper
PDF
In this paper, we report on a non-destructive technique, based on IR emission spectroscopy, for measuring the temperature of a hot spot in the gate channel of a GaAs metal/semiconductor field effect transistor (MESFET). A submicron-size He-Ne laser provides the local excitation of the gate channel and the emitted photons are collected by a spectrophotometer. Given the state of our experimental test system, we estimate a spectral resolution of approximately 0.1 Angstroms and a spatial resolution of approximately 0.9 μm, which is up to 100 times finer spatial resolution than can be obtained using the best available passive IR systems. The temperature resolution (<0.02 K/μm in our case) is dependent upon the spectrometer used and can be further improved. This novel technique can be used to estimate device lifetimes for critical applications and measure the channel temperature of devices under actual operating conditions. Another potential use is cost-effective prescreening for determining the 'hot spot' channel temperature of devices under normal operating conditions, which can further improve device design, yield enhancement, and reliable operation. Results are shown for both a powered and unpowered MESFET, demonstrating the strength of our infrared emission spectroscopy technique as a reliability tool.