Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
S. Hao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 259-265, May 3–5, 2010,
Abstract
View Paper
PDF
Thermally sprayed ceramic coatings have a layered structure with a limited interface bonding. Substrate surface temperature prior to droplets impact during deposition significantly influences the microstructure and properties of the coatings. Through the controlling of substrate surface temperature, the lamellar interface bonding of the deposits could be possibly improved. Al 2 O 3 coatings were deposited by atmospheric plasma spraying at the surface temperatures of 100, 275, 375, 480, 530 and 660°C. The fractured cross-section morphology was characterized by scanning electron microscopy. X-ray diffraction was used to analyse the phase contents. Micro-hardness, Young’s modulus and thermal conductivity of the deposits were measured. It was observed that the interface area with columnar grain growth across splat-splat interfaces was increased with increasing deposition temperature. Consequently, micro-hardness, Young’s modulus and thermal conductivity were increased with the increase of deposition temperature. The improvement of properties suggest that the lamellar interface bonding in the deposits was improved as the substrate surface temperature is increased.