Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
S. Choi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2024, ISTFA 2024: Conference Proceedings from the 50th International Symposium for Testing and Failure Analysis, 175-176, October 28–November 1, 2024,
Abstract
View Paper
PDF
Imec has developed a fully-functional integrated forksheet field-effect transistors (FETs), which is the most promising architecture for advancing beyond the GAA (Gate-All-Around) nanosheet generation for scaling and performance improvements past the 2nm technology node. From a manufacturing perspective, forksheet devices are extremely complex to process and requires accurate and sensitive analytical instruments like the AKONIS SIMS tool.
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 396-397, October 30–November 3, 2022,
Abstract
View Paper
PDF
This paper describes the new Cameca Akonis secondary ion mass spectrometry (SIMS) tool, which was developed to fill a critical gap in semiconductor fabrication processes by providing high throughput, high precision detection for implant profiles, composition analysis, and interfacial data directly in the semiconductor manufacturing line. The system enables automation in the primary ion column to ensure repeatability across tools for fabrication-level process control and tool-to-tool matching.