Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
S. Bengtsson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 184-189, June 7–9, 2017,
Abstract
View Paper
PDF
The wear of piston rings in large marine two-stroke diesel engines is a major maintenance cost. Applying coatings with good oxidation, corrosion resistance and high temperature strength, can lower the total maintenance cost. In the past nickel aluminide with chromium carbide have been applied to pistons by thermal spraying. Using laser cladding a suitable microstructure can be formed while at the same time avoiding cracks and bonding issues. In this report powders and coatings were manufactured in order to be able to investigate the dry-sliding wear behavior. Material with three levels of carbides was atomized. Wear test samples were manufactured by laser cladding. The dry sliding wear-mechanism maps are generated by using block on ring test setup where coated blocks slide against cast iron rings. All alloys exhibited regions of plasticity-dominated wear and oxidational wear with a transition region in-between. The carbide-containing alloys showed lower friction and wear in comparison to the carbide free nickel aluminide alloy.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 394-399, June 7–9, 2017,
Abstract
View Paper
PDF
Iron-based hardfacing alloys are widely used to counteract abrasive and impact wear of industrial components soil in, sand and mineral processing applications. These alloys show a high performance to cost ratio as well as a low environmental impact. The wear resistance of the components hardfaced with these alloys depends on achieved coating microstructure i.e. on the alloys chemical composition, the coating method and process parameters selected. The present work focuses on iron based hardfacing alloys with varying amount of chromium, vanadium, tungsten, molybdenum, boron and carbon deposited by plasma transferred arc (PTA) overlay welding. Weldability, hardness, abrasive and impact wear of the overlays are presented and interpreted through their microstructure. The performance of the iron based overlays is compared with that of nickel-based metal matrix composite coatings with tungsten carbide (MMC) commonly used for hardfacing of parts subjected to severe abrasive wear. The hardness of the iron based overlays investigated ranges between 60 and 65 HRC while abrasive wear is typically below 20 mm 3 (ASTM G65, procedure A). Microstructure consists of different primary precipitated carbides or borides, a martensitic matrix and eutectic structures.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 244-248, May 10–12, 2016,
Abstract
View Paper
PDF
This study evaluates a new iron-based hardfacing powder alloy. The powder, a FeWCrCB tool steel, is applied to mild steel substrates by plasma transferred arc (PTA) and laser cladding. The clad specimens are examined and tested for weldability, impact and abrasive wear resistance, and wear life. It is shown that the alloy solidifies in a narrow temperature range, first forming a fcc phase followed by a eutectic structure consisting of austenite, carbides, and borides. After solidification, the austenite is transformed to martensite. Impact wear testing shows that the new alloy offers approximately ten times longer life than tungsten-based nickel-matrix composites, but it was outperformed by 50% in abrasive wear tests.