Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Ryota Nagashima
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1257-1268, October 15–18, 2024,
Abstract
View Paper
PDF
This study investigates the role of grain-boundary precipitates in enhancing creep rupture strength of Ni-based alloys through analysis of Ni-15Cr-15Mo and Ni-15Cr-17Mo (at.%) model alloys. The investigation focused on the “Grain-boundary Precipitation Strengthening (GBPS)” effect from the thermally stable TCP phase, a phenomenon previously observed in Fe-Cr-Ni-Nb austenitic heat-resistant steels. Through multi-step heat treatments, specimens were prepared with varying grain boundary coverage ratios (ρ) of TCP P phase (oP56) and consistent grain-interior hardness from GCP Ni2(Cr, Mo) phase (oP6). In the 15 at.% Mo alloy, specimens with a higher coverage ratio (~80%) demonstrated significantly improved creep performance, achieving nearly four times longer rupture time (3793 h vs. 1090 h) at 300 MPa and 973 K compared to specimens with lower coverage (~35%). However, the 17 at.% Mo alloy showed unexpectedly lower performance despite high coverage ratios, attributed to preferential cavity formation at bare grain boundaries. These findings confirm that GBPS via thermally stable TCP phase effectively enhances creep properties in Ni-based alloys, with grain boundary coverage ratio being more crucial than intragranular precipitation density.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1436-1445, October 21–24, 2019,
Abstract
View Paper
PDF
Strengthening of Ni-based superalloys is in principle designed using GCP (Geometrically Close-packed phase) of Ni 3 Al-γ' (L1 2 ). However, game-changing microstructural design principle without relying on γ' phase will be needed for further development of the alloys. We are currently constructing a novel microstructure design principle, using thermodynamically stable TCP (Topologically Close-packed phase) for grain boundaries, together with GCP other than γ' phase for grain interiors, based on grain boundary precipitation strengthening (GBPS) mechanism. One of the promising systems is Ni-Cr-Mo ternary system, where TCP of NiMo (oP112) phases, μ (hR13) and P (oP56), together with GCP of Ni 3 Mo (oP8) and Ni 2 Cr (oP6) exists. In this study, thus, phase equilibria among A1 (fcc)/TCP/GCP phases in Ni-Cr-Mo and Ni-Cr-W systems have been examined at temperature range from 973 K to 1073 K, based on experiment and calculation. In Ni-Cr-Mo system, Ni 2 (Cr, Mo) with oP6 Pearson symbol, which is stable at about 873 K in Ni-Cr binary system, is formed to exist even at 1073 K. oP6 phase is coherently formed in A1 matrix with a crystallographic orientation of {110} A1 // (100) oP6 , <001>Α1 // [010]oP6, indicating GCP at composition range around Ni-15Cr-15Mo as island. In Mo-rich region there is Α1/NiMo/oP6 three-phase coexisting region, whereas another three-phase coexisting region of Α1/P/oP6 exists in Cr-rich region. Based on vertical section, it is possible to design microstructure with TCP at grain boundaries, together with oP6 phase within grain interiors by two-step heat treatment.