Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Ruediger Schuelein
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 821-838, August 31–September 3, 2010,
Abstract
View Paper
PDF
Abradability, erosion and steam oxidation tests were conducted on commercial and experimental abradable coatings in order to evaluate their suitability for applications in steam turbines. Steam oxidation tests were carried out on free-standing top coat samples as well as coating systems consisting of a bond and an abradable top coat. Mapping of the abradability performance under widely varied seal strip incursion conditions was carried out for a candidate abradable coating that showed good steam oxidation performance in combination with good erosion resistance. The abradability tests were carried out on a specially designed test rig at elevated temperatures. The steam oxidation analysis combined with the abradability mapping results provide a potentially improved seal coating system that can be integrated into existing steam turbine designs for various seal locations. Such design integration is easily achieved and can be applied to steam turbine components that are sprayed in dedicated coating shops or even at the site of final turbine assembly.