Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Rudolph Blum
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1-10, August 31–September 3, 2010,
Abstract
View Paper
PDF
This paper examines the ongoing significance of pulverized coal-fired steam plants in global power generation, focusing on technological advancements and strategies for improving efficiency and reducing CO 2 emissions. It traces the development of Ultra-Supercritical (USC) plants with steam temperatures around 600°C and explores immediate opportunities for further efficiency enhancements, including the innovative Master Cycle. The potential for increasing steam temperatures to 650°C using new steels and to 700°C with nickel-based AD 700 technology is discussed. The paper outlines a comprehensive strategy for CO 2 emission reduction: maximizing plant efficiency, co-firing with CO 2 -neutral fuels, and integrating with district heating/cooling or industrial heat consumers. Carbon capture and storage techniques are presented as a final step in this multi-faceted approach to sustainable power generation.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 116-136, October 25–28, 2004,
Abstract
View Paper
PDF
In Europe, the development of boilers and steam turbines for operation above 700°C is part of the EU-supported AD700 project. This collaborative effort includes major European power plant manufacturers, utilities, and research institutes. The project began in 1998 and was extended to 2003, with a second phase running from 2002 to 2005, potentially extending further for long-term creep tests. The goal is to develop the necessary technology for constructing and operating such plants. This paper outlines the development of high-temperature materials crucial for the AD700 project. It covers factors influencing alloy design and selection, the scope and results of investigations on candidate alloys, and the ongoing program for full-scale prototype component manufacturing. These prototypes undergo extensive long-term testing. Additionally, the development of joining procedures for these materials is discussed.