Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Robert L. Cryderman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 288-296, September 30–October 3, 2024,
Abstract
View Paper
PDF
Carburizing and induction hardening are two surface heat treatments commonly used to increase wear resistance and fatigue performance of steel parts subject to cyclical torsional loading. It was originally hypothesized that performing an induction surface hardening heat treatment on parts previously carburized could provide further increased fatigue life, however initial torsional fatigue results from previous work indicated the opposite as the as-carburized conditions exhibited better torsional fatigue strength than the carburized plus induction surface hardened conditions. The aim of this work is to further elucidate these torsional fatigue results through metallography and material property characterization, namely non-martensitic transformation product (NTMP) analysis, prior austenite grain size (PAGS) analysis, and residual stress vs depth analysis using x-ray diffraction (XRD). A carburizing heat treatment with a case depth of 1.0 or 1.5 mm and an induction hardening heat treatment with a case depth of 0, 2.0, or 3.0 mm were applied to torsional fatigue specimens of 4121 steel modified with 0.84 wt pct Cr. The carburized samples without further induction processing, the 0 mm induction case depth, served as a baseline for comparison. The as-received microstructure of the alloy was a combination of polygonal ferrite and upper bainite with area fractions of approximately 27% and 73% respectively. The only conditions that exhibited NMTP were the as-carburized conditions. These conditions also exhibited larger average PAGS and higher magnitude compressive residual stresses at the surface compared to the carburized plus induction hardened conditions. The compressive residual stresses offer the best explanation for the trends observed in the torsional fatigue results as the conditions with NMTP present and larger PAGS exhibited the best torsional fatigue performance, which is opposite of what has been observed in literature.
Proceedings Papers
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 35-42, October 17–19, 2023,
Abstract
View Paper
PDF
Carburizing and induction hardening are two commonly used surface heat treatments that increase fatigue life and surface wear resistance of steels without sacrificing toughness. It is hypothesized that induction hardening following carburizing could yield further increased torsional fatigue performance through reducing the magnitude of the tensile residual stresses at the carburizing case-core interface. If successful, manufacturers could see gains in part performance by combining both established approaches. A carburizing heat treatment with a case depth of 1.0 or 1.5 mm and an induction hardening heat treatment with a case depth of 0, 2.0, or 3.0 mm were applied to torsional fatigue specimens of 4121 steel modified with 0.84 wt pct Cr. The carburized samples without further induction processing, the 0 mm induction case depth, served as a baseline for comparison. The as-received microstructure of the alloy was a combination of polygonal ferrite and upper bainite with area fractions of approximately 27% and 73% respectively. The case microstructure of the heat-treated conditions was primarily tempered martensite and transitioned to a bainitic microstructure around the deepest overall case depth. Material property characterization consisted of radial cross-sectional hardness testing and torsional fatigue testing. The hardness profiles confirmed that the designed case depths were achieved for all conditions. Torsional fatigue testing was conducted using a Satec SF-1U Universal Fatigue Tester. Of the six tested conditions, the condition with the deepest case depths, i.e. carburized to 1.5 mm and induction hardened to 3.0 mm, was expected to have the greatest increase in fatigue performance. However, initial fatigue results potentially indicate the opposite effect as the non-induction hardened samples exhibited longer fatigue lives on average.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 187-195, September 14–16, 2021,
Abstract
View Paper
PDF
Low pressure carbonitriding and pressurized gas quenching heat treatments were conducted on four steel alloys. Bending fatigue tests were performed, and the highest endurance limit was attained by 20MnCr5+B, followed by 20MnCr5, SAE 8620+Nb, and SAE 8620. The differences in fatigue endurance limit occurred despite similar case depths and surface hardness between alloys. Low magnitude tensile residual stresses were measured near the surface in all conditions. Additionally, nonmartensitic transformation products (NMTPs) were observed to various extents near the surface. However, there were no differences in retained austenite profiles, and retained austenite was mostly stable against deformation-induced transformation to martensite during fatigue testing, contrasting some studies on carburized steels. The results suggest that the observed difference in fatigue lives is due to differences in chemical composition and prior austenite grain size. Alloys containing B and Nb had refined prior austenite grain sizes compared to their counterparts in each alloy class.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 229-237, September 14–16, 2021,
Abstract
View Paper
PDF
Precision cold-forging processes are used to produce near-netshape parts that may then be carburized. During carburization thermal cycles, abnormal grain growth (AGG) after cold forging is known to develop microstructures which limit fatigue strength. In the present study, a small 0.04 wt.% Nb addition was made to a low-alloyed AISI 4121 steel containing 0.3 wt.% Mo. Subcritically annealed specimens were cold rolled (to simulate cold forging) at selected reduction ratios up to 50%, heated according to a simulated gas carburizing cycle at 930 °C, and water quenched to produce a final martensitic microstructure. The number density of abnormally grown grains increased rapidly as the cold rolling reduction ratio increased from 0 to 10%. With a further increase in reduction ratio, the extent of AGG decreased and was absent in samples subjected to the maximum reduction ratio of 50%. The evolution of fine (Nb, Mo)(C,N) precipitates at various stages of processing was characterized by thermodynamic calculations and electron microscopy and compared to the occurrence of abnormal austenite grain growth. The significance of these results for controlling AGG and thus optimizing fatigue performance in commercially-produced cold-forged and carburized components is discussed.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 115-122, October 15–17, 2019,
Abstract
View Paper
PDF
Vacuum carburizing with high pressure gas quenching is increasingly employed to reduce near-surface intergranular oxidation and quenching distortion. It has also been shown to reduce processing times because it can be conducted at higher temperatures, up to 1100 °C. These temperatures, however, may cause austenite grain coarsening, making steel more susceptible to fatigue failure. This paper presents a study showing how microalloying carburizing steels with Mo and Nb improves resistance to austenite grain growth. The control of grain size is attributed to solute and precipitation effects.