Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-10 of 10
Robert Chivas
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2024, ISTFA 2024: Conference Proceedings from the 50th International Symposium for Testing and Failure Analysis, 454-459, October 28–November 1, 2024,
Abstract
View Paper
PDF
Advanced node semiconductor reverse engineering has always demanded cutting-edge techniques to cleanly extract the key structural information from the integrated circuit (IC) design. Core circuit edit technologies such as taking a backside wafer approach, employing scanning focused ion beam (FIB) recipes, optimized chemical delivery, and endpoint technology based on ultraviolet (UV) photon spectroscopy can play an important role in success. Once delayered, the IC's structural layers can be subjected to high-resolution scanning electron microscope (SEM) imaging. A new tool has been developed that incorporates these capabilities for dedicated IC delayering. These capabilities allow for the visualization of individual layers, transistors, interconnects, and other critical elements at nanometer-scale resolution, unveiling valuable insights into the IC's design and functionality.
Proceedings Papers
ISTFA2020, ISTFA 2020: Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, 357-361, November 15–19, 2020,
Abstract
View Paper
PDF
The journey to the circuit layer will be described by first discussing baseline processes of laser assisted chemical etching (LACE) steps before the focused ion beam (FIB) workflow. These LACE processes take advantage of a dual 532 nm continuous wave (CW) and pulse laser system, however limitations and overhead that is transferred over to the FIB operator will be demonstrated. Experiments show an additional third 355 nm ultraviolet (UV) pulse laser process introduction into the workflow can further reduce the remaining silicon thickness (RST) relieving FIB overhead. In addition, complex pulse laser patterning techniques will show a refinement to nonuniform produced silicon. Finally, other pulse laser patterning techniques such as polygon etch capability will allow laser etching around and in-between features to enhance circuit layer accessibility for debug operations.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 454-459, November 10–14, 2019,
Abstract
View Paper
PDF
Infrared optical probing techniques that have significant applications to and continued development for silicon physical debug have existed for decades. More recently, resolution enhancement achieved by improving numerical aperture, etc. have reached fundamental limits and the ability for resolution to match node scaling with radiation transparent to silicon (photon energy < silicon bandgap) becomes diffraction limited for some 10nm and many future process nodes. Decreasing the wavelength used for imaging and signal acquisition can improve resolution; however, it is well documented that absorption increases sharply for photons with energy greater than the bandgap of the bulk substrate material. Significant reduction in the thickness of the backside substrate material can be performed to achieve acceptable transmission through the absorbing substrate, but the requirement for very thin sample preparation significantly modifies the thermal system surrounding active circuitry. Here, high aspect ratio trenches are shown to offer a unique method to take advantage of thick silicon (> 100µm) for lateral heat dissipation as well as thin silicon (< 2µm) for minimally absorbing optical path in close proximity to enable case-by-case preparation methods for postsilicon labs faced with visible light resolution requirements on high power density circuits.
Journal Articles
Journal: EDFA Technical Articles
EDFA Technical Articles (2017) 19 (4): 36–44.
Published: 01 November 2017
Abstract
View article
PDF
Deprocessing of ICs is often the final step for defect validation in FA cases with limited fault-isolation information. This article presents a workflow for deprocessing ICs from the backside using automated thinning and large-area plasma FIB delayering. Advantages to this approach include a reduction in manual planarization and depackaging and a higher degree of precision and repeatability.
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 285-298, November 5–9, 2017,
Abstract
View Paper
PDF
This paper discusses the development of an extensible programmatic workflow that leverages evolving technologies in 2D/3D imaging, distributed instrument control, image processing, and automated mechanical/chemical deprocessing technology. Initial studies involve automated backside mechanical ultra-thinning of 65nm node IC processor chips in combination with SEM imaging and X-ray tomography. Areas as large as 800μm x 800μm were deprocessed using gas-assisted plasma FIB delayering. Ongoing work involves enhancing the workflow with “intelligent automation” by bridging FIB-SEM instrument control and near real-time data analysis to establish a computationally guided microscopy suite.
Proceedings Papers
ISTFA2016, ISTFA 2016: Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, 19-26, November 6–10, 2016,
Abstract
View Paper
PDF
The visible approach of optical Contactless Fault Isolation (VIS-CFI) serves the perspective of application in FinFET technologies of 10 nm nodes and smaller. A solid immersion lens (SIL) is mandatory to obtain a proper resolution. A VISCFI setup with SIL requires a global polishing process for sub-10 µm silicon thickness. This work is the first to combine all these necessary components for high resolution VIS-CFI in one successful experiment. We demonstrate Laser Voltage Imaging and Probing (LVI, LVP) on 16/14 nm technology devices and investigate a focus depth dependence of the LVI/LVP measurement in FinFETs.
Proceedings Papers
ISTFA2016, ISTFA 2016: Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, 166-171, November 6–10, 2016,
Abstract
View Paper
PDF
Anticipating the end of life for IR-based failure analysis techniques, a method of global backside preparation to ultra-thin remaining silicon thickness (RST) has been developed. When the remaining silicon is reduced, some redistribution of stress is expected, possibly altering the performance (timing) of integrated circuits in addition to electron-hole pair generation. In this work, a study of the electrical invasiveness due to grinding and polishing silicon integrated circuits to ultra-thin (< 5 um global, ~ 1 um local) remaining thickness is presented.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 6-13, November 1–5, 2015,
Abstract
View Paper
PDF
Visible light laser voltage probing (LVP) for backside improved optical spatial resolution is demonstrated on ultrathinned bulk Si samples. A prototype system for data acquisition, a method to produce ultra-thinned bulk samples as well as LVP signal, imaging, and waveform acquisition are described on bulk Si devices. Spatial resolution and signal comparison with conventional, infrared LVP analysis is discussed.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 460-465, November 1–5, 2015,
Abstract
View Paper
PDF
Anticipating the end of life for IR-based failure analysis techniques, a method of global backside preparation to ultra-thin remaining silicon thickness (RST) has been developed. Ultra-thin RST enables VIS light techniques such as laser voltage probing. In this work we investigate the lower RST limit due to sub-surface damage from grinding and a one-step polishing method to achieve 3 um RST (+/- 0.8 um) over 121 mm2 die (11 x 11 mm) test package as well as 5 um (+/- ) over 109.2 mm2 (8.0 x 13.7mm) active device.
Proceedings Papers
Preparation of Wafer Level Packaged Integrated Circuits Using Pulsed Laser Assisted Chemical Etching
ISTFA2012, ISTFA 2012: Conference Proceedings from the 38th International Symposium for Testing and Failure Analysis, 491-497, November 11–15, 2012,
Abstract
View Paper
PDF
Pulsed Laser Assisted Chemical Etching (PLACE) is an advanced method of surface preparation that etches backside silicon to ultra-thin remaining layer thickness for Focused Ion Beam (FIB) circuit edit and failure analysis of Wafer Level Packages (WLP). PLACE can achieve ultra-high purity and fine dimensional control since it is a dry process relying on pyrolytic vapor phase reactions initiated, and constrained, by a pulsed laser.