Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Robert C. Goldstein
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 111-118, May 6–7, 2025,
Abstract
View Papertitled, Limitations of Standard Probes for the Measurement of Spray Quenching
View
PDF
for content titled, Limitations of Standard Probes for the Measurement of Spray Quenching
While researchers have attempted to characterize heat transfer coefficients in spray quenching standard immersion probes, the high surface heat transfer creates steep thermal gradients that cause measurement lag and underestimate coefficients. These inaccurate measurements significantly impact predictions of microstructure, dimensions, and residual stress distribution. This study examines thermal gradients across different probe diameters and materials to determine optimal probe geometry for accurate heat transfer coefficient measurement and calculation.
Proceedings Papers
Cooling Requirements for Soft Magnetic Composite Impeders in Inductive Tube Welding Installations
Free
QDE2025, QDE 2025: Proceedings of the 3rd International Conference on Quenching and Distortion Engineering, 173-181, May 6–7, 2025,
Abstract
View Papertitled, Cooling Requirements for Soft Magnetic Composite Impeders in Inductive Tube Welding Installations
View
PDF
for content titled, Cooling Requirements for Soft Magnetic Composite Impeders in Inductive Tube Welding Installations
This paper discusses the importance of proper coolant flow circuit design. A case study for an impeder design is presented, and the calculation results are compared to measurements made on the physical test stand.
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 288-296, September 30–October 3, 2024,
Abstract
View Papertitled, Effects of Surface Induction Hardening on the Torsional Fatigue Performance of Previously Carburized Modified 4121 Steel
View
PDF
for content titled, Effects of Surface Induction Hardening on the Torsional Fatigue Performance of Previously Carburized Modified 4121 Steel
Carburizing and induction hardening are two surface heat treatments commonly used to increase wear resistance and fatigue performance of steel parts subject to cyclical torsional loading. It was originally hypothesized that performing an induction surface hardening heat treatment on parts previously carburized could provide further increased fatigue life, however initial torsional fatigue results from previous work indicated the opposite as the as-carburized conditions exhibited better torsional fatigue strength than the carburized plus induction surface hardened conditions. The aim of this work is to further elucidate these torsional fatigue results through metallography and material property characterization, namely non-martensitic transformation product (NTMP) analysis, prior austenite grain size (PAGS) analysis, and residual stress vs depth analysis using x-ray diffraction (XRD). A carburizing heat treatment with a case depth of 1.0 or 1.5 mm and an induction hardening heat treatment with a case depth of 0, 2.0, or 3.0 mm were applied to torsional fatigue specimens of 4121 steel modified with 0.84 wt pct Cr. The carburized samples without further induction processing, the 0 mm induction case depth, served as a baseline for comparison. The as-received microstructure of the alloy was a combination of polygonal ferrite and upper bainite with area fractions of approximately 27% and 73% respectively. The only conditions that exhibited NMTP were the as-carburized conditions. These conditions also exhibited larger average PAGS and higher magnitude compressive residual stresses at the surface compared to the carburized plus induction hardened conditions. The compressive residual stresses offer the best explanation for the trends observed in the torsional fatigue results as the conditions with NMTP present and larger PAGS exhibited the best torsional fatigue performance, which is opposite of what has been observed in literature.
Proceedings Papers
3D Simulation of an Automotive Wheel Hub and Induction Hardening Coil to Solve Coil Lifetime Issues
Free
HT 2021, Heat Treat 2021: Extended Abstracts from the 31st Heat Treating Society Conference and Exposition, 44-48, September 14–16, 2021,
Abstract
View Papertitled, 3D Simulation of an Automotive Wheel Hub and Induction Hardening Coil to Solve Coil Lifetime Issues
View
PDF
for content titled, 3D Simulation of an Automotive Wheel Hub and Induction Hardening Coil to Solve Coil Lifetime Issues
This paper revisits a case study presented at Heat Treat 2009, investigating the failure of induction coils used for heat treating automotive wheel hubs. At the time, computer simulation was beginning to allow for virtual prototyping of heat treat applications as an alternative to experimental testing. As explained in the original paper on p. 86 of the 2009 HTS conference proceedings, although simulation helped in the development of a more robust coil, it was not used to pinpoint the cause of failure. In this current work, the authors tackle the same problem aided by more than a decade of improvements in compute power and finite element analysis techniques. To highlight the leaps made in virtual prototyping, the induction hardening coil previously analyzed using an axisymmetric 2D model is now examined using more precise 3D electromagnetic and thermal models while accounting for the rotation of the part.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 63-69, October 15–17, 2019,
Abstract
View Papertitled, Improving Inductive Welding System Performance with Soft Magnetic Composites
View
PDF
for content titled, Improving Inductive Welding System Performance with Soft Magnetic Composites
Inductive welding systems used to make metal tubes often incorporate a ferrite impeder to limit induced electrical current on the ID of the tube under the induction coil. This paper assesses the improvement that can be achieved through the use of soft magnetic composites, instead of ferrite, and the addition of an external magnetic controller or bridge. The authors explain how they simulated the potential impact of the two design modifications and experimentally verified the results.