Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Date
Availability
1-4 of 4
Rishi Pillai
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 235-246, October 15–18, 2024,
Abstract
View Paper
PDF
During the last decades, new generations of Ni-based superalloys have emerged with judiciously controlled chemistries. These alloys heavily rely on the addition of refractory elements to enhance their mechanical properties at elevated temperatures; however, a clear interpretation of the influence of these minor-element additions on the alloy's high-temperature oxidation behavior is still not well understood, particularly from the standpoint of predicting the transition from internal to external alumina formation. In this context, the present investigation describes a systematic study that addresses the intrinsic effects that minor element additions of Nb, Ta, and Re have on the oxidation behavior of alumina-scale forming γ-Ni alloys. By combining a novel simulation approach with high-temperature oxidation experiments, the present study evidences the generally positive effect associated with 2 at. % addition of Ta and Re as well as the detrimental consequences of Nb additions on the 1100 °C oxidation of (in at. %) Ni-6Al-(0,4,6,8)Cr alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 885-896, October 15–18, 2024,
Abstract
View Paper
PDF
Supercritical CO 2 (sCO 2 ) is of interest as a working fluid for several concepts including the direct- fired Allam cycle as a low-emission fossil energy power cycle. Over the past 10 years, laboratory exposures at 300 bar sCO 2 have found reasonably good compatibility for Ni-based alloys at <800°C, including an assessment of the sCO 2 impact on room temperature mechanical properties after 750°C exposures. However, initial screening tests at 1 and 20 bar CO 2 at 900°-1100°C showed poor compatibility for Ni-based alloys. In an open cycle, the introduction of 1%O 2 and 0.1- 0.25%H 2 O impurities at 300 bar increased the reaction rates ≥2X at 750°C. At lower temperatures, steels are susceptible to C ingress and embrittlement. Creep-strength enhanced ferritic steels may be limited to <550°C and conventional stainless steels to <600°C. Two strategies to increase those temperatures are higher Ni and Cr alloying additions and Al- or Cr-rich coatings. Alloy 709 (Fe- 20Cr-25Ni) shows some promising results at 650°C in sCO 2 but reaction rates were accelerated with the addition of O 2 and H 2 O impurities. Pack aluminized and chromized Gr.91 (Fe-9Cr-1Mo) and type 316H stainless steel show some promise at 600°-650°C but further coating optimization is needed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 897-908, October 15–18, 2024,
Abstract
View Paper
PDF
There is a critical lack of data on the mechanical behavior of candidate structural materials for advanced nuclear reactors under molten halide salt environments. Limited legacy data from the molten salt reactor experiment (MSRE) program showed a significant reduction in creep rupture strength of a Ni-base alloy in molten fluoride salt. With ongoing efforts to commercialize different molten salt reactor concepts, the industry can considerably benefit from quantitative information on the impact of molten halide salts on the engineering properties such as creep and fatigue strength of materials of interest. The present work aims to assess the role of molten salt corrosion on the creep behavior of three alloys 316H, 617 and 282 at 650-816 °C. Creep tests were conducted in fluoride (FLiNaK) and chloride (NaCl-MgCl 2 ) salts. Initial results from the ongoing testing will be presented which suggest that the molten salt environment caused a 25-50% reduction in creep rupture lifetime compared to air exposures. Physics-based corrosion and creep models were employed to gain some insights into the potential degradation mechanisms.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, October 15–18, 2024,
Abstract
View Paper
PDF
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.