Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Book Series
Article Type
Volume Subject Area
Date
Availability
1-16 of 16
Richard D. Sisson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 7-16, September 14–16, 2021,
Abstract
View Paper
PDF
Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 110-116, September 14–16, 2021,
Abstract
View Paper
PDF
A physics-based software model is being developed to predict the nitriding and ferritic nitrocarburizing (FNC) performance of quenched and tempered steels with tempered martensitic microstructure. The microstructure of the nitrided and FNC steels is comprised of a white compound layer of nitrides (ε and γ’) and carbides below the surface with a hardened diffusion zone (i.e., case) that is rich in nitrogen and carbon. The composition of the compound layer is predicted using computational thermodynamics to develop alloy specific nitriding potential KN and carburizing potential KC phase diagrams. The thickness of the compound layer is predicted using parabolic kinetics. The diffusion in the tempered martensite case is modeled using diffusion with a reaction. Diffusion paths are also developed on these potential diagrams. These model predictions are compared with experimental results.
Proceedings Papers
HT 2021, Heat Treat 2021: Proceedings from the 31st Heat Treating Society Conference and Exposition, 203-211, September 14–16, 2021,
Abstract
View Paper
PDF
AISI 52100 is a high carbon alloy steel typically used in bearings. One hardening heat treatment method for AISI 52100 is austempering, in which the steel is heated to above austenitizing temperature, cooled to just above martensite starting (Ms) temperature in quench media (typically molten salt), held at that temperature until the transformation to bainite is completed and then cooled further to room temperature. Different austempering temperatures and holding times will develop different bainite percentages in the steel and result in different mechanical properties. In the present work, the bainitic transformation kinetics of AISI 52100 were investigated through experiments and simulation. Molten salt austempering trials of AISI 52100 were conducted at selected austempering temperatures and holding times. The austempered samples were characterized and the bainitic transformation kinetics were analyzed by Avrami equations using measured hardness data. The CHTE quench probe was used to measure the cooling curves in the molten salt from austenitizing temperature to the selected austempering temperatures. The heat transfer coefficient (HTC) was calculated with the measured cooling rates and used to calculate the bainitic transformation kinetics via DANTE software. The experimental results were compared with the calculated results and they had good agreement.
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2020) 178 (8): 64–66.
Published: 01 November 2020
Abstract
View article
PDF
NitrideTool software, developed by the the Center for Heat Treating Excellence (CHTE), simulates the gas nitriding of steels to understand nitriding potential, temperature, time, and surface condition.
Proceedings Papers
HT 2019, Heat Treat 2019: Proceedings from the 30th Heat Treating Society Conference and Exposition, 1-10, October 15–17, 2019,
Abstract
View Paper
PDF
As a novel manufacturing technology additive manufacturing (AM) has advantages such as energy saving, reduced material waste, faster design-to-build time, design optimization, reduction in manufacturing steps, and product customization compared to conventional manufacturing processes. Heat treatment is widely used to improve the properties of conventional manufactured steel parts. The response of additively manufactured steel parts to heat treatment may be different from conventionally manufactured steel parts due to variations in microstructure. An understanding of heat treatment processes for additively manufactured steel parts is necessary to develop their heat treatment process parameters. In the present work 20MnCr5 steel was selected to investigate the carburization heat treatment of additively manufactured parts. These parts were fabricated by selective laser melting (SLM) for the carburization study. It was found that the AM parts fabricated by the SLM process show the microstructure of tempered martensite while the microstructure of as-received wrought part is ferrite and pearlite. It was also experimentally found that the SLM process decarburizes the entire SLM part. Before carburizing, a normalization process was conducted on both SLM and wrought 20MnCr5 parts to reduce the effect of the pre-carburizing microstructure. The objective of this project is to determine the carburization performance of additively manufactured steel parts. The results for the SLM parts in terms of carbon concentration and microhardness profiles are compared with the results for the wrought steel. It was found that the carburized SLM part in the present work has higher carbon concentration near the surface, deeper case depth, and higher total carbon flux than the carburized wrought part.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 27-32, October 24–26, 2017,
Abstract
View Paper
PDF
Aluminide diffusion coatings enhance carburization and oxidation resistance of iron and nickel based alloys by formation of iron and nickel aluminides which extends the life of furnace alloys and fixtures. As a part of a large project in the Center for Heat Treating Excellence (CHTE), an aluminized coating on RA330 was studied by a hot dip process followed by diffusion heat treatment. Samples of RA330 steel were dipped in pure liquid aluminum at 700 °C for 10 minutes. After dipping, four samples were given an additional diffusion treatment. To predict the developed phases, computational analysis was used and the results were compared with the experimental data.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 387-388, October 24–26, 2017,
Abstract
View Paper
PDF
Gas quenching is drawing increasing attention within the heat treat industry. The heat transfer coefficient (HTC) for gas quenching can reach 2000 when using high pressure and high velocity nitrogen, helium, or mixtures of these gases. The HTC in water quenching is between 3000 and 4000. The lower HTC of gas quenching may result in workpieces with less distortion and residual stress after quenching. Compared to water, polymer, and oil quenching, gas quenching is environmentally friendly, and the surface of the part is clean after quenching.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 403-406, October 24–26, 2017,
Abstract
View Paper
PDF
A finite element (FE) method was used to determine the important heat treating process parameters that impact the residual stress and distortion in steel. The FE model combines a commercially available heat treatment software DANTE to the finite element analysis software ABAQUS. A thermomechanical FE model was developed to model the evolution of microstructure, the volumetric changes associated with the kinetics of martensitic phase transformation and the formation and distribution of residual stress during quenching of steel. Alternative quenching parameters such as different steel grades, quenching orientation, immersion speed, quenching agent, quenching temperature, austenitizing temperature and part geometry were ranked based on their impact. The main purpose of this paper is to provide processing guidelines to control residual stress and distortion.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 60-63, October 20–22, 2015,
Abstract
View Paper
PDF
To experimentally investigate the effect of tempering temperature and time on the structure and composition of martensite, AISI 52100 was austenized at 1000°C for 40 minutes and quenched in agitated water at 21°C. The as-quenched steel contained body-centered tetragonal (BCT) martensite with 22% retained austenite. These samples were tempered at 100°C, 200°C, and 300°C with different holding times and then were characterized by x-ray diffraction (XRD) to determine the effect on the structure of the martensite. It was found that the content of retained austenite did not change after tempering at 100°C. Retained austenite decomposed after tempering for 40 minutes at 300°C. The changes in crystal structures and lattice parameters for tempered martensite with different holding times and temperatures were measured. The effect of sample preparation on retained austenite and the structure of martensite and tempered martensite was evaluated. An effective technique for carbide extraction and collection in steel is introduced.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 365-367, October 20–22, 2015,
Abstract
View Paper
PDF
As part of a project to identify nondestructive techniques to determine the surface hardness and case depth of carburized steel, Meandering Winding Magnetometers (MWM) measurements were evaluated. MWM technology is based on eddy current testing. Compared to traditional eddy current testing, MWM measurements integrate the generating coil and detection coil into a thin, flexible sensor that can be applied to complex geometries. Conductivity and permeability are measured with MWM equipment to evaluate the properties of carburized steel. For this study, samples of 8620 were carburized to selected hardness and case depths. MWM technology was determined to be an effective method to detect surface hardness. The results of this study are presented and discussed in this paper.
Proceedings Papers
HT2015, Heat Treat 2015: Proceedings from the 28th Heat Treating Society Conference, 368-372, October 20–22, 2015,
Abstract
View Paper
PDF
Grain growth during heat treatment can affect mechanical properties. A large grain size can result in a lower strength and susceptibility to brittle failure. In order to control the prior austenite grain size, the effect of Austenitizing temperatures and holding times on the grain size and hardness in 4140 steel was experimentally investigated. Samples were heat treated at 900, 1000, and 1100 °C, and held for 1, 4, and 9 hours. After austenitizing, samples were cooled in the furnace to 850 °C before they were quenched in water at room temperature. Each sample was cut, mounted, and polished. Rockwell hardness and microhardness tests were performed on each sample. A Picric etch was used for grain size analysis. The grain size was measured following the E112 standard test method. It was found that the prior austenite grain size increased with temperature and time according to the standard grain growth model. It was also found that the as-quenched hardness decreased with an increase in grain size.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005777
EISBN: 978-1-62708-165-8
Abstract
This article provides an overview of surface contaminants that may affect the heat treatment processes and end-product quality. It presents information on the chemicals used to clean different surface contaminants of steels. The article discusses three types of cleaning methods, namely, mechanical, chemical, and electrochemical and their effectiveness and applicability. The mechanical cleaning methods include grinding, brushing, steam or flame jet cleaning, abrasive blasting, and tumbling. Solvent cleaning, emulsion cleaning, alkaline cleaning, acid cleaning, pickling, and descaling are chemical cleaning methods. The electrochemical cleaning methods include electropolishing, electrolytic alkaline cleaning, and electrolytic pickling. The article provides information on cleanliness measurement methods such as qualitative tests and quantitative tests to ensure product quality. Health hazards that may be associated with each cleaning method and the general control measures to be used for each hazard are tabulated.
Proceedings Papers
HT2011, Heat Treating 2011: Proceedings from the 26th Heat Treating Society Conference, 1-8, October 31–November 2, 2011,
Abstract
View Paper
PDF
Atmospheric pressure carburizing and neutral carbon potential annealing in nitrogen containing small additions of hydrocarbon gases can offer cost and steel surface quality alternatives to the comparable, endothermic atmosphere or vacuum operations. An experimental program was conducted for refining real-time process control methods in carburizing of AISI 8620 steel under N 2 -C 3 H 8 blends containing from 1 to 4 vol% of propane at 900°C and 930°C. Multiple types of gas analyzers were used to monitor residual concentrations of H 2 , CO, CO 2 , H 2 O, O 2 , CH 4 , C 3 H 8 , and other hydrocarbons inside furnace. A modified shim stock technique and the conventional oxygen probe (mV) were additionally evaluated for correlation with gas analysis and diffusional modeling using measured carbon mass flux values (g/cm 2 /s). Results of this evaluation work are presented.
Proceedings Papers
HT2011, Heat Treating 2011: Proceedings from the 26th Heat Treating Society Conference, 285-294, October 31–November 2, 2011,
Abstract
View Paper
PDF
Austenitic stainless steels are critical in the modern economies with applications ranging from food processing and cryogenic machinery to medical implants and aerospace instrumentation. Tough, resistant to low-temperature embrittlement and many forms of corrosion, these steels are, nevertheless, prone to scratching and galling in service. Case hardening was found to be effective when combined with corrosive surface treatments or in low-pressure, direct plasma-ion discharges, but inhibited in simple atmospheric-pressure furnaces. This paper presents preliminary evaluation of new, rapid (3-4 hrs) nitriding and carbonitriding treatments at low- (500-565°C) and high- (1100°C) temperature ranges involving injection of high-voltage, electric arc-activated, N2-based, NH3 and hydrocarbon gas mixes to the conventional box furnace. Reported data includes characterization of stainless steel product layers using SEM-EDS, XRD, OM, Leco elemental analysis, and microhardness profiling, as well as laser gas analysis of the residual furnace atmosphere.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005529
EISBN: 978-1-62708-197-9
Abstract
This article provides information on the heat-source model, conduction heat-transfer model of parts and fixtures, and the radiation heat-transfer and convection heat-transfer models in a furnace. It describes the two types of furnaces used for heat treating: batch furnaces and continuous furnaces. The heating methods, such as direct-fired heating, radiant-tube heating, and electrical heating, are also discussed. Furnace temperature control is essential to ensure quality heat treatment. The article explains the operating procedure of the automatic temperature controllers used in most furnace operations. Heating simulations can be validated by comparison with measured results in full-scale furnaces. The article also presents several case studies to illustrate the use of the simulations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130133
EISBN: 978-1-62708-284-6
Abstract
This article presents six case studies of failures with steel forgings. The case studies covered are crankshaft underfill; tube bending; spade bit; trim tear; upset forging; and avoidance of flow through, lap, and crack. The case studies illustrate difficulties encountered in either cold forging or hot forging in terms of preforge factors and/or discontinuities generated by the forging process. Supporting topics that are discussed in the case studies include validity checks for buster and blocker design, lubrication and wear, mechanical surface phenomenon, forging process design, and forging tolerances. Wear, plastic deformation processes, and laws of friction are introduced as a group of subjects that have been considered in the case studies.