Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Ravi Shankar
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 82-86, October 24–26, 2017,
Abstract
View Paper
PDF
For over two decades, heat treat modeling has progressed from an academic concept to a mature production tool. This presentation will discuss many barriers that have been mitigated with a wide range of developments. Early limitations included solver speed and robustness, material data, specialized heating and the requirement to include microstructure development models over a series of dissimilar operations and processes. Solver improvements ranging from parallel processing to specialized iteration methods allow models with millions of elements to run on a personal computer. Additional degrees of freedom have greatly improved solution accuracy. Meshing techniques allow users to identify critical regions for a finer mesh, such as the surface of gear teeth that will be carburized. Rotational (and other) symmetry is frequently used to further refine many models. Driven by the demand for modeling data, sources for quality material properties have increased over the years. Additionally, tools to approximate required data based on chemistry are available and maturing. Radiant, convective, electrical resistance and induction heating effects are incorporated into heat treat simulation systems. Integrated simulation systems also include large deformation behavior to capture the effects of forging, coining or other mechanical processes on the microstructure. A vision of the future will include the use of Design of Experiments (DOE) and optimization in heat treat simulation. How companies will model the entire process chain to build a more accurate fatigue model for the part in service will be discussed. In terms of TRL (technology readiness level), heat treat simulation was in the 2 – 3 range in the 1990’s. Today it is in the 7 – 8 range and moving quickly.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 166-171, May 21–24, 2012,
Abstract
View Paper
PDF
Gas turbine efficiency is of paramount importance in the modern carbon conscious global economy and the industry is always looking for ways to improve the efficiency of gas turbine engines. Gas bypass between the rotating turbine blade tip and the engine casing affects both the efficiency and the power output of an engine. An increase in this clearance of 125µm can result in an increase of 0.5% in specific fuel consumption. Abradable coatings have been designed to allow the turbine blade abrasive tip to cut a path into shroud abradable coating to improve the seal between the blade tip and the casing. A holistic approach to improving the abradable system – the abradable coating and the blade tip – is necessary. Better blade tips can result in use of denser, more erosion resistant abradables improving performance of the whole system. Current blade tips are limited as the matrix oxidizes at high temperature losing its ability to hold as well as protect the CBN particles. Improvement in blade tips – both in the cutting particles and the matrix which hold these particles – will therefore improve the abradable system performance, as well as allow the use of denser, more erosion resistant abradable materials. This paper represents efforts to improve the matrix oxidation resistance which holds CBN particles. The matrix is a low-aluminum MCrAlHf which is further aluminized to improve the oxidation resistance. New coatings being tested are enhanced aluminide coatings, platinum aluminide coatings and platinum chromide aluminide coatings. The results will be discussed in terms of matrix composition and microstructure as deposited and after static oxidation. The effect of matrix and its impact on the blade tip performance will also be reviewed.