Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
R.L. Cryderman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
IFHTSE2024, IFHTSE 2024: Proceedings of the 29th International Federation for Heat Treatment and Surface Engineering World Congress, 220-226, September 30–October 3, 2024,
Abstract
View Papertitled, Microstructural Development and Fracture Behavior after Rapid Tempering in the Tempered Martensite Embrittlement Regime of 1045 Steel
View
PDF
for content titled, Microstructural Development and Fracture Behavior after Rapid Tempering in the Tempered Martensite Embrittlement Regime of 1045 Steel
Quenching and tempering (Q&T) allows a wide range of strength and toughness combinations to be produced in martensitic steels. Tempering is generally done to increase toughness, although embrittling mechanisms result in temperature ranges where strength and toughness may decrease simultaneously. Tempered martensite embrittlement (TME) represents one such mechanism, associated with the decomposition of retained austenite and precipitation of cementite during tempering, usually between 250 and 450 °C. The use of induction heating allows for time-temperature combinations, previously unobtainable by conventional methods, that have been shown to improve properties. The present work shows a beneficial effect of rapid tempering in alloy 1045, with an increase in energy absorption of about 50% when measured at room temperature via a three-point bending fracture test in the TME regime. Phase fraction measurements by Mössbauer spectroscopy showed that increased energy absorption was obtained despite essentially complete decomposition of retained austenite during tempering. Scanning electron microscopy (SEM) investigation of the carbide distribution showed refinement of the average carbide size of approximately 15% in the rapid tempered conditions. SEM characterization of the fracture surfaces of the rapid tempered three-point bend samples showed that, despite an increase in energy absorption in the TME regime, increased microscopic ductile fracture appearance was observed only at the highest test temperature.
Proceedings Papers
The Effects of Thermomechanical Pretreatment on Abnormal Grain Growth During Simulated Carburization
HT2023, Heat Treat 2023: Proceedings from the 32nd Heat Treating Society Conference and Exposition, 11-16, October 17–19, 2023,
Abstract
View Papertitled, The Effects of Thermomechanical Pretreatment on Abnormal Grain Growth During Simulated Carburization
View
PDF
for content titled, The Effects of Thermomechanical Pretreatment on Abnormal Grain Growth During Simulated Carburization
Carburizing is frequently utilized in the automotive industry in order to increase the surface hardness of a steel alloy while retaining toughness and ductility in the core. At elevated temperatures where some carburizing processes are performed, abnormal grain growth (AGG) can occur. During AGG, the microstructure undergoes bimodal grain growth with some grains growing exponentially faster than others. The growth of large austenite grains through AGG compromises the fatigue performance of carburized steels. AGG is further exacerbated by cold work introduced into the alloy prior to carburizing. Warm work is also sometimes utilized in part forming prior to carburizing. In this study, the effects of warm work on AGG were investigated. AISI 4121 and a modified AISI 4121 that contains Nb and Mo microalloying additions rather than Al for grain size control were warm worked in a range of 0-50% at a temperature of 900°C and then heated in a furnace for various lengths of time at a temperature of 930 °C to simulate a carburizing thermal history. The average prior austenite grain size (PAGS) tended to decrease as the degree of warm work increased, with the NbMo-modified alloy presenting a finer PAGS at all percentages of warm reduction and different lengths of time at the simulated carburization temperature. Specimens of the 50% warm reduced condition were also cold rolled at 5, 10, and 25% reductions, typical of cold sizing, prior to simulated carburization. The average PAGS of these CR samples was finer than their 0% CR counterparts, but the PAGS increased with CR in the modified alloy after 328 minutes of simulated carburization.