Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
R.A. Mahesh
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 371-374, June 2–4, 2008,
Abstract
View Paper
PDF
High velocity oxy fuel thermal spray (HVOF) processing is one of the proven thermal spray technologies to develop high temperature oxidation and corrosion resistant coatings for various high temperature applications such as thermal power plants, aero turbines, and energy conversion systems. In the present investigation Nickel based coatings, viz. Ni-5Al, NiCrAl, and NiCrAlY-0.4wt%CeO 2 were sprayed on Fe based superalloy (Superfer 800) by HVOF spray process as the chosen superalloy finds extensive use steam boilers, furnace equipment, heat exchangers and piping in chemical industry The degradation behaviour of the coated superalloy was studied in the aggressive environment of 40%Na 2 SO 4 -60%V 2 O 5 at 900°C, using thermogravimetric technique, to understand the protective nature of the coatings under cyclic conditions. The coatings were found to be effective in increasing the resistance to the degradation in the given environment. Among the coatings investigated, NiCrAlY-0.4wt%CeO 2 coating was found to be more protective on the superalloy in the given aggressive environment. The corrosion mechanisms were elucidated through the X-ray diffraction (XRD) analysis and microstructural characterization techniques such as FE-SEM/EDAX analysis of the corroded products formed at high temperature.