Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
R. Schmid
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.9781627084598
EISBN: 978-1-62708-459-8
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006370
EISBN: 978-1-62708-192-4
Abstract
This article describes friction force as a function of normal force in dry forming. It focuses on metal forming operations usually classified as cold working and hot working based on metallurgical considerations. The article discusses surface flattening and roughening of workpiece asperities in metal forming. It presents advanced tribology models and results for friction in isothermal forging operations in which the tooling is maintained at a temperature close to that of the workpiece. The article provides information on heat transfer models. It discusses the effect of wear in manufacturing processes. The article concludes with information on the main categories of tool and die materials used for a variety of manufacturing application.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 826-831, May 14–16, 2007,
Abstract
View Paper
PDF
Low pressure plasma spraying (LPPS) and LPPS-Thin Film (LPPS-TF) processes cover a broad operational pressure range from typically 200 mbar down to a few millibars, filling the gap between conventional thermal spray processes, where coatings are made from the liquid phase, and conventional thin film technologies such as PVD or CVD, where coatings are produced from precursors species in the vapor phase. Using some specific parameters of the LPPS-TF process, the injected material can be partially or even completely in gaseous phase, disqualifying diagnostics based on the detection of solid or liquid particles such as the DPV-2000 (Tecnar, St-Bruno, QC, CA). In this case, other optical diagnostic tools have to be used, such as optical emission spectroscopy (OES) to characterize the LPPS-TF process. In this paper, a qualitative study of the properties of the injected material in the plasma jet using DPV-2000 and optical emission spectroscopy is presented by varying specific plasma parameters. Moreover, in some particular cases, it is shown that the combination of DPV measurements and OES can help to monitor the coating process and to improve the basic understanding of the LPPSTF technology.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1027-1041, October 25–28, 2004,
Abstract
View Paper
PDF
Materials are developed and improved by adjusting both the alloy chemistry and the processing conditions to achieve desired microstructures and properties. Traditionally, these improvements have been made by a slow and labor-intensive series of experiments. But it is now possible to replace this expensive trial and error process by carrying out only a few ‘key’ experiments in conjunction with thermodynamic calculations. These calculations are powerful tools for alloy design, enabling improvement in the selection of alloy chemistry and the parameters used for fabrication steps such as heat treatments. In order to have the utmost confidence in the results obtained from the calculations, it is essential to have high quality thermodynamic databases. Such databases can be used not only in phase equilibrium calculations but also as the critical input for further kinetic simulations. In the present paper, we present our work on the development of reliable thermodynamic databases for nickel-based superalloys and iron alloys. We first briefly describe the methodology of developing these databases and then discuss some specific examples using the databases. With the aid of these examples, the usefulness of thermodynamic databases in aiding the development of advanced materials is discussed.