Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
R. Reed
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 631-636, May 15–18, 2006,
Abstract
View Paper
PDF
Thermal spraying of dense titanium coatings in the air atmosphere was achieved by using a two-stage high velocity oxy-fuel process (HVOF) called the Warm Spray Process. In the process nitrogen gas is mixed with the combustion gas to lower the gas temperature. Gas dynamics modeling of the flow field of the gas in the spray apparatus as well as the acceleration and heating of titanium powder injected from the powder feed ports were conducted. Based on the obtained temperature history of a titanium powder particle, its oxidation during flight was also predicted by using a Wagner-type oxidation model. These results were compared with measured velocity and temperature of sprayed particles by DPV2000 and the properties of deposited coatings. Significant discrepancy in the temperature of sprayed particles was found between the calculation and measurement whereas the measured velocity was closer to the model calculation. The model prediction of oxygen content was in a good agreement with the analysis of actual coatings. Furthermore, properties of the sprayed coatings such as porosity, oxygen content were correlated with the particle velocities and temperatures. Nitrogen gas was highly effective in lowering the oxygen content, but excessive nitrogen addition caused the coating porosity to increase due to insufficient particle temperatures.