Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
R. C. Thomson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 568-580, October 11–14, 2016,
Abstract
View Paper
PDF
Martensitic 9Cr steels have been developed which are strengthened by boron in order to stabilize the microstructure and improve their long-term creep strength. Boron plays a key role in these steels by stabilising the martensitic laths by decreasing the coarsening rate of M 23 C 6 carbides, which act as pinning points in the microstructure. In this work two modified FB2 steel forgings are compared. Both forgings have similar compositions but one underwent an additional remelting process during manufacture. Creep tests showed that this additional processing step resulted in a significant increase in time to failure. In order to investigate the effect of the processing route on microstructural evolution during aging and creep, a range of advanced electron microscopy techniques have been used including ion beam induced secondary electron imaging and High Angle Annular Dark Field (HAADF) imaging in the Scanning Transmission Electron Microscope. These techniques have enabled the particle population characteristics of all the second phase particles (M 23 C 6 , Laves phase, BN and MX) to be quantified for materials from both forging processes. These quantitative data have enabled a better understanding of how the processing route affects the microstructural evolution of FB2 steels.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 735-746, October 11–14, 2016,
Abstract
View Paper
PDF
Additive manufacturing (AM) is a process where, as the name suggests, material is added during production, in contrast to techniques such as machining, where material is removed. With metals, AM processes involve localised melting of a powder or wire in specific locations to produce a part, layer by layer. AM techniques have recently been applied to the repair of gas turbine blades. These components are often produced from nickel-based superalloys, a group of materials which possess excellent mechanical properties at high temperatures. However, although the microstructural and mechanical property evolution during the high temperature exposure of conventionally produced superalloy materials is reasonably well understood, the effects of prolonged high temperature exposure on AM material are less well known. This research is concerned with the microstructures of components produced using AM techniques and an examination of the effect of subsequent high temperature exposures. In particular, the paper will focus on the differences between cast and SLM IN939 as a function of heat treatment and subsequent ageing, including differences in grain structure and precipitate size, distribution and morphology, quantified using advanced electron microscopy techniques.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 962-973, October 11–14, 2016,
Abstract
View Paper
PDF
Creep properties of 9Cr heat resistant steels can be improved by the addition of boron and nitrogen to produce martensitic boron-nitrogen strengthened steels (MarBN). The joining of this material is a crucial consideration in the material design since welds can introduce relatively weak points in the structural material. In the present study, creep tests of a number of MarBN weld filler metals have been carried out to determine the effect of chemistry on the creep life of weld metal. The creep life of the weld metals was analysed, and the evolution of creep damage was investigated. Significant differences in the rupture life during creep have been observed as a function of boron, nitrogen and molybdenum concentrations in the weld consumable composition. Although the creep lives differed, the particle size and number in the failed creep tested specimens were similar, which indicates that there is a possible critical point for MarBN weld filler metal creep failure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 143-154, October 22–25, 2013,
Abstract
View Paper
PDF
A global movement is pushing for improved efficiency in power plants to reduce fossil fuel consumption and CO 2 emissions. While raising operating temperatures and pressures can enhance thermal efficiency, it necessitates materials with exceptional high-temperature performance. Currently, steels used in power plants operating up to 600°C achieve efficiencies of 38-40%. Advanced Ultra Supercritical (A-USC) designs aim for a significant leap, targeting steam temperatures of 700°C and pressures of 35 MPa with a lifespan exceeding 100,000 hours. Ni-based superalloys are leading candidates for these extreme conditions due to their superior strength and creep resistance. Haynes 282, a gamma prime (γ′) precipitation-strengthened alloy, is a promising candidate for A-USC turbine engines, exhibiting excellent creep properties and thermal stability. This research investigates the microstructural evolution in large, sand-cast components of Haynes 282. Microstructure, referring to the arrangement of grains and phases within the material, significantly impacts its properties. The research examines the alloy in its as-cast condition and after various pre-service heat treatments, aiming to fully identify and quantify the microstructural changes. These findings are then compared with predictions from thermodynamic equilibrium calculations using a dedicated Ni alloy database. The research reveals that variations in heat treatment conditions can significantly affect the microstructure development in Haynes 282, potentially impacting its mechanical properties.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 371-381, October 22–25, 2013,
Abstract
View Paper
PDF
Coatings are an essential part of the materials system to protect the turbine blades from oxidation and corrosive attack during service. Inter-diffusion of alloying elements between a turbine blade substrate and their coatings is a potential concern for coated turbine blades at ever increasing operating temperatures because this can cause the formation of undesirable Secondary Reaction Zones (SRZs), which may degrade the mechanical properties of coated Ni-based superalloys. Understanding the effects of each element on the SRZ formation is essential in order to understand both the mechanism and inter-diffusion behaviour between coatings and substrates. In this research, a number of simpler aluminized ternary Ni-Al-X (where X is Co, Cr, Re, Ru or Ta) alloys were investigated in order to elucidate the separate effects of each element on the microstructural evolution, especially at the coating/substrate interface. The aluminized ternary alloys developed distinctive diffusion zones, depending on the third alloy element, ‘X’. Specifically, it has been found that both Ni-Al-Re and Ni-Al-Ta alloys developed a continuous SRZ-like diffusion layer. This diffusion zone persisted in the Ni-Al-Re alloys after high temperature exposure, indicating that Re has a stronger effect on SRZ formation than Ta.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 412-423, October 22–25, 2013,
Abstract
View Paper
PDF
A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation can be achieved when taking the presence of oxidation coatings into account as part of a blade refurbishment strategy. The work has shown that the γ′ morphology changes during creep testing, and that through subsequent heat treatments the γ′ microstructure can be altered to achieve a similar γ′ size and distribution to the original creep test starting condition. Thermodynamic equilibrium calculations have been shown to be helpful in determining the optimum temperatures to be used for the refurbishment heat treatments. The interaction of oxidation resistant coatings with the alloy substrate and refurbishment process have been explored with both experimental measurements and coupled thermodynamic and kinetic calculations. The predictive nature of the coupled thermodynamic and kinetic calculations was evaluated against an ex-service blade sample which had undergone refurbishment and further ageing. In general there was good agreement between the experimental observations and model predictions, and the modelling indicated that there were limited differences expected as a result of two different refurbishment methodologies. However, on closer inspection, there were some discrepancies occurring near the interface location between the coating and the base alloy. This comparison with experimental data provided an opportunity to refine the compositional predictions as a result of both processing methodologies and longer term exposure. The improved model has also been used to consider multiple processing cycles on a sample, and to evaluate the coating degradation between component service intervals and the consequences of rejuvenation of the blade with repeated engine exposure. The results from the experimental work and modelling studies potentially offer an assessment tool when considering a component for refurbishment.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 424-435, October 22–25, 2013,
Abstract
View Paper
PDF
The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM) after high temperature degradation and rejuvenation heat treatments. The relationship between the microstructure, mechanical properties and the applied heat treatment procedures has been investigated. It is shown that there are significant differences in the rafting behaviour, the size of the ‘channels’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample after high temperature degradation compared to an as-received sample after the same degradation procedure. The results indicate that although the microstructure of as-received and rejuvenated samples were similar, the chemical segregation was more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements during rejuvenation was not completely eliminated. The aim of this research is to provide greater understanding of the suitability of rejuvenation heat treatments and their role in the extension of component life in power plant applications.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 679-692, August 31–September 3, 2010,
Abstract
View Paper
PDF
A detailed examination has been carried out of the microstructural evolution and mechanical properties of samples of T91 and T92 steels which have been subjected to both a ‘normal’ preservice heat treatment and an extended stress relief heat treatment at 765°C for up to 16 hours. The samples have subsequently been creep tested to failure at different stresses ranging from 66 to 112 MPa. In each case, a reduction in rupture time was observed of 20-30% in the samples which had experienced the additional stress relief heat treatment compared to those which had not. It is shown that these data, when compared with the mean values expected from European Creep Collaborative Committee (ECCC) Datasheets, result in a reduction in stress of approximately 10% of the mean value predicted from the ECCC data, which is within the allowable scatter band.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1183-1197, October 25–28, 2004,
Abstract
View Paper
PDF
This paper investigates the cause of premature failures in certain Grade 91 steel components used in UK power plants. The failures were linked to both low material hardness and specific chemical compositions that fell within ASTM specifications but had a low nitrogen-to-aluminum ratio (N:Al). The investigators examined eight material batches, including those involved in failures, new stock, and in-service components with similar properties. Testing confirmed these materials had lower creep resistance compared to standard Grade 91 steel. Microscopic analysis revealed the presence of large aluminum nitride precipitates, which limited the formation of beneficial vanadium nitride precipitates, leading to reduced creep strength. These findings suggest that even within the ASTM specification limits, a low N:Al ratio can negatively impact the performance of Grade 91 steel.