Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
R Waudby
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
The Impact and Sliding Wear Performance of Thermal Spray HVAF Thick Carbide Coatings on Steel Substrates
Available to Purchase
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 279-284, May 21–23, 2014,
Abstract
View Papertitled, The Impact and Sliding Wear Performance of Thermal Spray HVAF Thick Carbide Coatings on Steel Substrates
View
PDF
for content titled, The Impact and Sliding Wear Performance of Thermal Spray HVAF Thick Carbide Coatings on Steel Substrates
This study assesses the sliding wear and impact behavior of thick carbide coatings deposited on hot-rolled steel by high-velocity airfuel (HVAF) spraying. Coating samples are evaluated based on scratch, ball-on-disc sliding, normal impact, and compound sliding impact tests and efforts are made to rank materials according to tribological criteria including coating failure mode, friction response, and wear. The approach is intended to provide insights for product designers specifying thermal spray coatings for steel components and structures from a wear performance perspective.