Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Praveen Vedagarbha
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 125-128, October 30–November 3, 2022,
Abstract
View Paper
PDF
Recently, electron beam probing (EBP) has had a resurgence in failure analysis communities due to its clear resolution advantage compared to optical techniques. This paper describes an approach for a detailed advanced logic e-beam probing system, capable of measuring both high bandwidth waveforms and frequency maps. An investigation of optimizing the signal-to-noise of the pulsed beam is presented. By minimizing the working distance and the use of quadrature signal analysis, the e-beam prober is capable of high bandwidth and high-resolution data with adequate signal-to-noise. The use of such system provides a scalable solution for electrical failure analysis for advanced logic integrated circuits.
Proceedings Papers
ISTFA2003, ISTFA 2003: Conference Proceedings from the 29th International Symposium for Testing and Failure Analysis, 371-377, November 2–6, 2003,
Abstract
View Paper
PDF
Near-infrared laser stimulation techniques such as OBIRCH, TIVA, OBIC and LIVA are now commonly used to localize resistive defects from the front and backside of ICs. However, these laser stimulation techniques cannot be applied to dynamically failed ICs. Recently, two laser stimulation techniques dedicated to dynamic IC diagnostics have been proposed. These two techniques, called Resistive Interconnection Localization (RIL) and Soft Defect Localization (SDL), combine a continuous laser beam with a dynamically emulated IC. The laser stimulation effect on the circuit is monitored through the applied test pattern pass/fail status. This paper presents the methodology to move from static to dynamic laser stimulation. The application of such Dynamic Laser Stimulation (DLS) techniques is illustrated on dynamically failed microcontrollers.