Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Phillip E. Russell
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 344-349, November 6–10, 2005,
Abstract
View Papertitled, 3-D Defect Characterization using Plan View and Cross-Sectional TEM/STEM Analysis
View
PDF
for content titled, 3-D Defect Characterization using Plan View and Cross-Sectional TEM/STEM Analysis
The primary objectives of failure analysis on structurally complex semiconductor devices are often to determine a defect's location and composition. Determining exactly how these defects propagate through a sample in three dimensions, to confirm a failure mode, is often elusive. This paper discusses characterizations of two defect types to illustrate a technique of sequentially imaging whisker type defects from orthogonal orientations using TEM/STEM. The first type is a high resistance short between two metal lines that is best imaged using STEM in order to observe subtle differences in material composition. The second is a crystalline dislocation through an optoelectronic device that is best observed using TEM. Details of resistive short characterization and crystalline defect characterization performed are provided. TEM/STEM has shown to be a practical tool for locating defects prior to cross sectional analysis. This allows defects to be located and characterized in three dimensions.
Journal Articles
Journal: EDFA Technical Articles
EDFA Technical Articles (2002) 4 (4): 29–33.
Published: 01 November 2002
Abstract
View articletitled, pn Junction Location Using an EBIC Technique in a Scanning Transmission Electron Microscope
View
PDF
for article titled, pn Junction Location Using an EBIC Technique in a Scanning Transmission Electron Microscope
STEM-EBIC imaging, a nano-characterization technique, has been used in the study of electrically active defects, minority carrier diffusion length, surface recombination velocity, and inhomogeneities in Si pn junctions. In this article, the authors explain how they developed and built a STEM-EBIC system, which they then used to determine the junction location of an InGaN quantum well LED. They also developed a novel FIB-based sample preparation method and a custom sample holder, facilitating the simultaneous collection of Z-contrast, EBIC, and energy dispersive spectroscopy images. The relative position of the pn junction with respect to the quantum well was found to be 19 ± 3 nm from the center of well.
Proceedings Papers
ISTFA2002, ISTFA 2002: Conference Proceedings from the 28th International Symposium for Testing and Failure Analysis, 467-471, November 3–7, 2002,
Abstract
View Papertitled, Site Specific 2-D Implant Profiling Using FIB Assisted SCM
View
PDF
for content titled, Site Specific 2-D Implant Profiling Using FIB Assisted SCM
Advances in semiconductor technology are driving the need for new metrology and failure analysis techniques. Failures due to missing, or misregistered implants are particularly difficult to resolve. Two-dimensional implant profiling techniques such as scanning capacitance microscopy (SCM) rely on polish preparation, which makes reliably targeting sub 0.25 um structures nearly impossible.[1] Focused ion beam (FIB) machining is routinely used to prepare site-specific cross-sections for electron microscopy inspection; however, FIB induced artifacts such as surface amorphization and Ga ion implantation render the surface incompatible with SCM (and selective etching techniques). This work describes a novel combination of FIB machining and polish preparation that allows for site-specific implant profiling using SCM.