Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Peter F. Tortorelli
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, October 15–18, 2024,
Abstract
View Paper
PDF
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 821-831, October 22–25, 2013,
Abstract
View Paper
PDF
A model based on a concept of “fraction of exfoliated area” as a function of oxide scale strain energy was developed to predict the extent of exfoliation of steam-side scale from boiler tube superheater loops. As compared with the Armitt diagram, which can be used to predict when scale damage and exfoliation would be likely to occur, a “fraction of exfoliated area” approach provides an estimation of mass of scale released and the fraction of tube likely to be blocked by the exfoliation. This paper gives results for the extent of blockage expected in a single bend of a superheater loop was predicted as a function of operating time, bend geometry, and outlet steam temperature under realistic service conditions that include outages. The deposits of exfoliated scale were assumed to be distributed horizontally the tubes bends. Three types of bends were considered: regular bends, short bends, and hairpin bends. The progressive increase in steam and tube temperatures along a single loop of superheater tubing and the ensuing variation of oxide scale thickness are considered. Numerical simulation results for a superheater loop made of TP347H austenitic steel indicated that tube blockage fractions larger than 50% are likely to occur within the first two years of boiler operation (with regularly scheduled outages) for outlet tube temperatures of 540-570°C, which is consistent with practical experience. Higher blockage fractions were predicted for tubes with hairpin bends than for tubes with regular bends, of length that are larger than five internal tube diameters. Finally, the blockage model presented can be used with some confidence to devise operating schedules for managing the consequences of oxide scale exfoliation based on projections of time to some critical blockage fraction for specific boiler operating conditions.