Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Paul Yu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 425-429, November 9–13, 2014,
Abstract
View Papertitled, Optimization of TEM Sample Preparation to Reduce the Overlapping of TEM Images
View
PDF
for content titled, Optimization of TEM Sample Preparation to Reduce the Overlapping of TEM Images
This paper reports optimized Transmission Electron Microscopy (TEM) sample preparation methods with Focus Ion Beam (FIB), which are used to reduce or avoid the overlapping of TEM images. Several examples of optimized cross-section sample preparation on 38nm and 45nm pitch are provided with general and novel FIB methods. And its application to plan view TEM sample preparation is also shown. The results establish that the proposed method is useful to reduce or remove pattern overlapping effects in dense structures and can produce higher quality TEM images than can be obtained using conventional top-down FIB-based TEM preparation methods.