Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Patrick Poirier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 474-479, November 1–5, 2015,
Abstract
View Paper
PDF
LASER techniques are widely used for pre-opening in combination with a final manual or automated wet chemistry decapsulation. Even if most of the ICs may be opened today, and if opening the recently introduced Ag wires packages have been solved with novel chemical recipes, the need for a greener and safer solution is still there. Plasma techniques combined with LASER can be a promising solution to these challenges. In this paper, after a presentation of the state of the art of the different techniques available in laboratories nowadays, the latest solution combining LASER and acid or plasma etching is presented. The paper compares the results obtained with these solutions on Cu an Ag wires devices with pros and cons for each solution. The results presented show the benefits, the constraints and the limitations of each technique regarding the different types of wires used in industry.
Journal Articles
Patrick Poirier, Patrice Schwindenhammer, Alban Colder, Bernadette Domengès, Patrice Schwindenhammer ...
Journal: EDFA Technical Articles
EDFA Technical Articles (2008) 10 (4): 6–14.
Published: 01 November 2008
Abstract
View article
PDF
This article presents a failure analysis workflow tailored for complex ICs and device packages. The FA flow determines the root cause of failures using nondestructive analysis and advanced sample preparation techniques. The nondestructive tests typically used are X-ray radiography, scanning acoustic microscopy, time domain reflectometry, and magnetic current imaging. To gain access to interconnect failures, laser ablation is used, typically in combination with chemical etching to finish the decapsulation process. Repackaging is also part of the FA flow and is briefly discussed.
Proceedings Papers
ISTFA2004, ISTFA 2004: Conference Proceedings from the 30th International Symposium for Testing and Failure Analysis, 29-32, November 14–18, 2004,
Abstract
View Paper
PDF
Magnetic field based techniques have shown great capabilities for investigation of current flows in integrated circuits (ICs). After reviewing the performances of SQUID, GMR (hard disk head technologies) and MTJ existing sensors, we will present results obtained on various case studies. This comparison will show the benefit of each approach according to each case study (packaged devices, flip-chip circuits, …). Finally we will discuss on the obtained results to classify current techniques, optimal domain of applications and advantages.