Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
P.Y. Lee
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 809-814, March 17–19, 1999,
Abstract
View Papertitled, Investigations of Thermal Barrier Coatings with Loading and Unloading to Various Stress Levels
View
PDF
for content titled, Investigations of Thermal Barrier Coatings with Loading and Unloading to Various Stress Levels
In this paper, plasma sprayed thermal barrier coatings (TBCs) with and without bond coat are stressed to various stress levels under four point bending with in situ acoustic emission (AE) to monitor any cracking activities. Micro- and macro-cracks occurring during the tests are investigated to better understand the failure mechanisms of TBCs. The results show that limited AE activities were detected in the first four stress-relief cycles, while plastic deformation and the greatest AE activity were observed when the applied load exceeded the yield point. In addition, they show that a TBC system that contained an adhesive layer had less AE activity (cracking events) than the TBC without an adhesive layer. In addition, the samples tested at a main speed of 5 micrometer/s resulted in a higher AE activity than the samples tested at 10 micrometer/s. With increasing plastic deformation, macro cracks and surface cracks also occurred. Paper includes a German-language abstract.