Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
P.S.T. Quek
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Role of Some Fuel Gases on Properties of HVOF Metallic Coatings
Available to Purchase
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 519-525, May 28–30, 2001,
Abstract
View Papertitled, Role of Some Fuel Gases on Properties of HVOF Metallic Coatings
View
PDF
for content titled, Role of Some Fuel Gases on Properties of HVOF Metallic Coatings
HVOF spraying process is widely used to improve component life in service due to the high bond strength of the coatings, which is a result of the high particle velocity upon impact, and consequent low coating porosity. However, many parameters can affect metallic coatings properties, especially unmelted particles and oxidation level. Flame parameters, such as calorific power, combustion ratio and temperature, are of prime importance. Moreover, the fuel gas employed in this spraying process can lead to various coating properties and deposition efficiency. The aim of this work was focused on the influence of some fuel gases, namely propane, propylene (LPG) and hydrogen, on stainless steel coating characteristics. A specific domain common for those three gases was determined in order to effectively compare those gases with the same flame parameters. Flame characteristics were computed using a simple model for all the fuel gases considered. Temperature as well as calorific power were fixed. For different substrate temperatures, obtained through a special CO 2 cooling nozzle system, richness was varied from 1.4 to 1.6. Microstructure investigation as well as oxide content and microhardness measurements were conducted. For the same kinetic torch parameters, thickness-per pass gave an idea of the deposition efficiency. In the range studied, deposits properties were quite similar for both LPG fuel gases. Hydrogen led to better characteristics in term of oxide content, although its deposition efficiency was a bit lower. A general law was established to link oxide content within the coatings to the flame parameters. A reasonable regression analysis was obtained for all the coatings sprayed. The combination of cooling efficiency (i.e. CO 2 flow rate) and flame characteristics (i.e. interaction of the particle in flight) led to a good correlation. These correlations were further verified by spraying another metallic powder, namely Inconel 625.