Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
P.S. Grant
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005225
EISBN: 978-1-62708-187-0
Abstract
Spray casting, also known as spray forming, is a niche casting process for the manufacture of preforms. This article lists commercial examples of alloys manufactured by spray casting and provides sequential steps of the spray casting process. Gas atomization is a chaotic, stochastic process that always produces a wide range of droplet diameters. The article schematically illustrates a typical log-normal droplet diameter probability density distribution on a mass or volume basis obtained by gas atomization. It also explains the changes in solid fraction during the spray casting process as a function of axial distance from the point of droplet atomization. The article concludes with information on the occurrence of macrosegregation and coarsening in spray cast preforms.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1211-1216, May 15–18, 2006,
Abstract
View Paper
PDF
For the last seven years, Oxford University and the Ford Motor Co. have been researching jointly the development of the large-scale spray forming of steel tooling capable for use in mass production, particularly for the pressing of sheet metal in automotive applications. These investigations have involved: comprehensive microstructure and property studies, modelling of shape evolution and heat flow, real-time feedback control of tool temperature to eliminate tool distortion, high speed imaging and particle image velocimetry of droplet deposition on 3D shapes, the testing of full-scale tools for different applications in the production environment, and detailed studies of the cost and time savings realised for different tooling applications. This paper will provide an overview of the scientific and technical progress to date, present latest results, and describe the current state-of-the-art. Many of the insights described have relevance and applicability across the family of thermal spray processes and applications.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 317-322, May 15–18, 2006,
Abstract
View Paper
PDF
As the initial step of a process control design for a substrate surface temperature control solution for Vacuum Plasma Spraying (VPS), the distribution of heat transfer coefficient h between impinging plasma gases and the substrate coating surface is required. An embedded calorimeter approach was used to measure the distribution of the convective heat transfer coefficient over the surface of a substrate and the resulting distributions have been compared with empirical correlations and CFD model predictions of the plasma jet/substrate interaction, as a function of VPS process parameters.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 815-820, May 15–18, 2006,
Abstract
View Paper
PDF
Vacuum plasma sprayed (VPS) tungsten (W) coatings hold great promise for plasma facing components in future fusion devices. However, the large coefficient of thermal expansion (CTE) mismatch between W and underlying structural steels poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper both the concept of functionally graded material (FGM) W/steel interlayers and the use of steel substrate surfaces with regular surface sculptures of millimetre scale created by e-beam surface manipulation, termed surfi-sculpt and developed by TWI of the UK are investigated. The objective of these approaches is to enhance coating adhesion and to engineer macroscopic variations in the effective CTE through the thickness of the subsequently VPS deposited W coating. The effects of surface geometry on coating adhesion and microstructure have been investigated, and preliminary conclusions on the key surface sculpture geometrical features required for high adhesion dense W coatings have been identified.
Proceedings Papers
ITSC 2001, Thermal Spray 2001: Proceedings from the International Thermal Spray Conference, 389-397, May 28–30, 2001,
Abstract
View Paper
PDF
This paper describes the manufacture of a new ceramic coating system based on Al 2 O 3 /SiC nanocomposite powder prepared by sol-gel processing followed by low pressure plasma spraying (LPPS) onto stainless steel substrates. In order to produce nanocomposite coatings of good adhesion and low porosity, the substrates were water-cooled to minimise thermal stresses associated with coefficient of thermal expansion mismatch and a CoNiCrAlY bond coat was used. The sol-gel powder feedstock and the as-sprayed coatings have been characterised by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and Nuclear Magnetic Resonance (NMR). The coating characteristics were compared with a reference Al 2 O 3 coating prepared from commercial feedstock powder. The thermal exposure of the sol-gel powder during spraying caused phase-changes and phase-decomposition. Examination of the sprayed coatings showed that it was possible to maintain the 20-200 nm SiC particles in the final Al 2 O 3 /SiC nanocomposite coating. The coatings also contained both stable α-Al 2 O 3 and metastable γ-Al 2 O 3 . Some minority phases such as silica and aluminosilicate formed in the sol-gel feedstock powder were fully decomposed during LPPS. This preliminary study indicates that sol-gel and LPPS processing is a potential route for the manufacture of nanocomposite coatings, which may offer significant improvements in some aspects of coating properties.
Proceedings Papers
ITSC2000, Thermal Spray 2000: Proceedings from the International Thermal Spray Conference, 821-827, May 8–11, 2000,
Abstract
View Paper
PDF
SiC fibre reinforced SiAlON-MoSi2 composites have been manufactured by concurrent fibre winding and low pressure plasma spraying (LPPS), producing multi-layer, circumferentially fibre-reinforced composite rings. LPPS parameters for the powder used were optimised by a two-level experimental design method followed by additional tuning, achieving smooth sprayed surfaces with low matrix porosity and good deposition efficiency. The microstructure of the SiAlON-MoSi2 matrix consisted of a lamellar structure and uniformly distributed SiAlON splats throughout the MoSi2 matrix. The spray/wind composites exhibited 2% porosity and well controlled fibre distribution. Matrix cracking occurred after heat treatment at 1500°C and was attributed to the development of large tensile residual stresses during cooling due to CTE mismatch. Increasing the SiAlON to MoSi2 ratio in the composite solved the problem. Simulations based on residual stresses showed that the maximum permissible fibre volume fraction to avoid matrix cracking was 0.06 for SiC/MoSi2 and 0.23 for SiC/SiAlON(40v/o)-MoSi2.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1193-1198, May 25–29, 1998,
Abstract
View Paper
PDF
A concurrent fibre winding and low pressure plasma spraying (LPPS) process has been developed to manufacture multiple fibre reinforced titanium matrix composite (TMC) rings in a single spraying operation. Optimisation of the LPPS parameters has been successively performed for two different sizes of Ti-6Al-4V powders by experimental design and statistical analysis, which provided minimum porosity and surface roughness for both powders. The most important LPPS parameters affecting porosity and surface roughness of deposits were Ar gas flow rate and chamber pressure. During TMC manufacture, the coarse Ti-6Al-4V powder spraying provided enhanced infiltration between fibres but caused degradation of fibre tensile strength, as well as a rough ring surface. The fine Ti-6Al-4V powder gave no significant degradation of fibre strength and a relatively smooth ring surface. Four-ply SiC fibre reinforced TMCs manufactured by the spray-wind process have also been evaluated in terms of porosity, fibre distribution and fibre damage.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1223-1228, May 25–29, 1998,
Abstract
View Paper
PDF
The manufacture of tooling using the electric arc spray process to spray steel directly onto a master pattern offers substantial reductions in the lead times required to make complex tooling for polymer injection moulding and other applications. The process of spray forming is fast, efficient, and low cost, and has been shown to be dimensionally accurate with proper control over the residual stresses that develop during spraying. Poor dimensional control because of high internal stresses in thick arc sprayed steel coatings is well known, but these problems can be avoided by the use of correct spraying conditions. This paper describes the steps of the spray forming process used to make tooling for polymer injection moulding. The spray forming route competed directly with a traditional method for toolmaking and considerably reduced the lead time from order to completion. The tooling produced by spray forming has been operating commercially in production in the U.S. and has to date produced in the region of half a million parts without appreciable wear. The incorporation of contoured cooling channels during spraying has enabled plastic injection moulding cycle times to be decreased by 15%.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 263-268, May 25–29, 1998,
Abstract
View Paper
PDF
Electric arc sprayed coatings with a disperse lubricating phase have potential for use in a variety of industrial applications as bearing materials including low friction coatings for drill string joints in the oil industry to reduce casing wear and lower drilling torque. This paper describes the optimisation of electric arc spray parameters for Fe-0.06wt.%C that will subsequently be used as a self-lubricating coating matrix. The effect of electric arc spray parameters on the microstructure of a Fe-0.06wt.%C matrix has been characterised in terms of deposition rate, temperature during manufacture, porosity and microhardness. It has been shown that the local coating temperature during directly affects the final coating porosity, grain size, grain morphology and microhardness. The most effective parameter in controlling coating temperature was the coating deposition rate. The Fe0.06wt.% C coating microstructure was primary equiaxed ferrite with a dispersion of spherodised Fe3C particles formed from the in-situ tempering of the as-sprayed martensite or bainite during spraying. A fuller analytical treatment of these phenomena is given elsewhere (13). Fe-0.06wt.%C powder particles microstructure was primarily bainitic or martensitic. A small number of Fe-0.06wt.%C powder particles showed a dendritic phase which has been proposed as retained austenite because of austenite stabilisation by fine grains and the N2 atmosphere, or an unidentified nitride layer.