Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
P. Sorsa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 145-150, May 25–29, 1998,
Abstract
View Paper
PDF
Several recently published studies have shown remarkable improvements in dry abrasion resistance and corrosion resistance of aluminum phosphate sealed oxide coatings when compared to unsealed ones. There are numerous applications in chemical industry where a corrosive environment is accompanied with abrasive or erosive particles. In this study the wet abrasion resistance and slurry erosion resistance of aluminum phosphate-sealed and unsealed oxide coatings were studied and compared to their dry abrasion resistance. In wet abrasion tests kaolin and water mixture was used as the abrasive. In slurry erosion tests several abrasives in water with various pH values was used as the erosive medium. The coatings were characterized for microstructure and their wear mechanisms were analyzed using SEM. The results from wear tests are reported and correlated with coating properties. The influence of coating quality to the relative improvement achieved by sealing is presented and discussed.
Proceedings Papers
ITSC1996, Thermal Spray 1996: Proceedings from the National Thermal Spray Conference, 489-491, October 7–11, 1996,
Abstract
View Paper
PDF
Plasma sprayed ceramic coatings usually have relatively high open porosity in order to provide a good corrosion protection. By using sealants the porosity values can be reduced. In this study atmospheric plasma sprayed (APS) aluminium oxide, chromium oxide and zirconium oxide coatings were sealed by a phosphoric acid treatment. After impregnation the coatings were heat treated at a curing temperature of 400°C. Phosphoric acid was found to react with the coating material during the heat treatment. Wear resistance was evaluated by rubber wheel abrasion tests and corrosion resistance by electrochemical potentio-dynamic polarization tests. Hardness values were also measured. Corrosion resistance and hardness values of sealed coatings were remarkable better in comparison to the unsealed coatings. Rubber wheel abrasion resistances of the sealed coatings were equal to those of Al 2 O 3 , ZTA, SiC and Si 3 N 4 sintered ceramics.