Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
P. Mertiny
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 370-376, May 11–14, 2015,
Abstract
View Paper
PDF
The influence of flame spraying parameters on coating microstructure and electrical conductivity of aluminum- 12silicon coatings deposited on polyurethane substrates was studied. In order to evaluate the effect of the spray parameters on temperature distribution and its corresponding effect on coating characteristics, an analytical model based on a Green’s function approach was employed. It was found that the addition of air to the flame decreased the temperature within the substrate. Dynamic mechanical analysis (DMA) of the PU substrate revealed that the PU softened as the temperature increased. Therefore, by increasing the pressure of the air injected into the flame spray torch from 35 kPa to 69 kPa, the particles impacted a stiffer substrate. This led to increased deformation of the particles into splats upon impact, improved interlocking, and the overall coating had lower porosity and lower electrical resistance. The results obtained indicated that coating properties are sensitive to both thermal spraying parameters and temperature distribution within the substrate when depositing on elastomeric materials. The effect of torch stand-off distance on coating properties was also evaluated. It was found that higher air pressure can cool the substrate and, therefore, allow for a decrease of the stand-off distance. As a result of shorter stand-off distances, a coating with lower porosity and electrical resistance was deposited.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 1-6, May 21–24, 2012,
Abstract
View Paper
PDF
The temperature distribution of glass fiber-reinforced epoxy flat plates coated with a thin oxy-acetylene flame-sprayed aluminum-12silicon coating was determined experimentally. The composite plates were fabricated by filament winding. Following winding, but prior to and during curing, garnet sand was uniformly distributed on the glass fiber-reinforced epoxy plate surface. The sand roughened the surface such that there was adhesion of the aluminum-12silicon particles to the surface. A resistive heating wire was attached to the coated surface. Thermocouples were attached to the composite and coating surfaces to measure transient and spatial surface temperature distributions. The spatial temperature of the coating and polymer surfaces decayed uniformly throughout the coating-composite ensemble from the heating wire. It was also observed that the coating served to increase the surface temperature of the coating-polymer system compared to uncoated samples. This was attributed to the large thermal conductivity of the metal coating and the low thickness of the samples.