Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
P. McNutt
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 766-771, June 7–9, 2017,
Abstract
View Paper
PDF
Cold gas dynamic spray has significant potential for load-bearing repairs of high-value metallic components, as it is capable of producing pore and oxide-free deposits of significant thickness and with good levels of adhesion and mechanical strength. However, recently published research has shown that the rapid solidification experienced by gas atomised powders during manufacture can lead to a non-equilibrium powder microstructure, including clusters of dislocations as well as significant localised segregation of alloying elements within each particle. This paper reports on an investigation into the solution heat treatment of a precipitation hardenable aluminium alloy powder. The objective was to create a consistent and homogeneous powder phase composition and microstructure before cold spraying, with the expectation that this would also result in a more favorable heat treatment response of the cold spray deposits. Aluminium alloy 7075 gas atomized powders were solution heat treated at 450 °C for 5 hours in a sealed glass vial under vacuum and quenched in water. The powder particle microstructures were investigated using scanning electron microscopy with electron back scatter diffraction (SEM/BSE) and optical microscopy. The dendritic microstructure and solute segregation in the gas atomized powders was altered, with the heat-treated powder particles exhibiting a homogeneous distribution of solute atoms. The influence on the mechanical properties of the powder particles was studied using micro-indentation. The heat-treated powders exhibited a hardness decrease of nearly 25% compared to the as-received powders. This paper relates the behavior and the deformation of both as-received and heat-treated powders during spraying (single particle impacts), comparing the measured hardness with the deformation effect and the material jetting occurring upon impact.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 210-216, May 11–14, 2015,
Abstract
View Paper
PDF
Laser-assisted cold-spray has been recognized for over a decade as a technique capable of depositing high quality coatings. By laser heating (and hence softening) the surface being coated, deposition can occur at particle velocities lower than those normally associated with the cold spray process. This can be used to increase deposition rate. However, it can also be used to facilitate the deposition of higher hardness material combinations, normally more out of the reach of the conventional cold spray process. Laser heating can also reduce the requirements of the process on gas usage and gas heating for a given combination, making it more cost-effective. In the work reported below, the capability of a novel co-axially laser-assisted system (COLA) to deposit higher hardness materials, relevant to a range of different industrial applications, has been evaluated. This system can be retrofitted to conventional cold spray equipment.