Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
P. Fischione
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2023, ISTFA 2023: Conference Proceedings from the 49th International Symposium for Testing and Failure Analysis, 550-553, November 12–16, 2023,
Abstract
View Paper
PDF
The ability to precisely remove the internal structures of a semiconductor device, layer-by-layer, is a necessity for semiconductor research and failure analysis investigation. Currently, numerous techniques are used, such as mechanical polishing, chemical etching, and gas assisted plasma focused ion beam (FIB) milling. However, all of these techniques have limitations in that they are unable to: (1) delayer a millimeter-scale area with nanometer-scale uniformity, (2) rapidly remove thick (>300 nm) device layers, or (3) perform automatic and accurate end pointing, which is challenging on thin (≤300 nm) device layers.
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 414-421, October 30–November 3, 2022,
Abstract
View Paper
PDF
We describe a fully integrated solution for millimeter-scale delayering of both logic and memory semiconductor devices. The flatness of the delayered device is controlled by an artificial intelligence algorithm, which uses feedback from multiple analytical detectors to control milling parameter adjustments in real time. The result is the precise removal of device layers and a highly planar surface.