Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-12 of 12
O. Kovářík
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 514-519, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thick deposits were produced from pure Al powder of three different sieve sizes using cold spraying at the same process parameters. The in-plane mechanical and fracture properties of the deposits were investigated using bending of small specimens in four specimen orientations. It was shown that increasing the Al particle size by approximately 50% and 100% leads to small, but statistically significant differences of yield strength. Further, the increase in the powder particle size led to higher fracture toughness K IC but lower fatigue crack growth threshold ΔK thr . This can be attributed to two different fracture mechanisms in the cold sprayed deposits. A trans-particular fracture in the near-threshold fatigue regime is controlled by the microstructure and work hardening of the particles. At higher cyclic loads and in quasi-static regime, the particle decohesion and the resulting crack path determine the fracture behavior instead. However, the observed effect of particle size was rather small, much smaller than the effect of spray process parameters observed in the previous research.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 622-630, May 4–6, 2022,
Abstract
View Paper
PDF
Mechanical and fatigue properties of cold sprayed (CS) Cu 20 Sn bell metal were tested in order to assess the potential applicability of the technology to repair impact areas of church bells. The CS bell metal was compared to its traditional cast counterparts, a fine-grained Cu 22 Sn bell metal seen in small bells, and a coarse-grained Cu 20 Sn seen in large bells. Similar to other CS metals, it was shown that both the strength as well as the fatigue crack growth rates at low loading are similar to the cast materials. The fracture toughness of the CS material was comparable with the finegrained Cu 22 Sn bell metal, while both were significantly lower than the coarse-grained Cu 20 Sn bell metal. The impact damage rate of the CS material determined by a periodic impact test was significantly higher than the (finegrained) cast material. Both materials showed a stabilized, very slow damage rate after the relatively fast initial crater formation. The results presented in this paper identify CS as a feasible restoration technology for church bells, and the introduced methodology presents a characterization method for quantitative description of bell metal impact damage.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 756-762, May 4–6, 2022,
Abstract
View Paper
PDF
Anisotropy of stress-strain behavior, fracture toughness, and fatigue crack growth rate of Ti6Al4V deposited by cold spray using nitrogen was studied. For that, flat deposits were tested with stress acting in the in-plane directions and tubular deposits were tested in the out-of-plane stress directions. In all tests, unified small-size specimens were used. It was shown that for the in-plane stress, the deposits can be considered isotropic, whereas the out-of-plane stress led to significantly lower values of the measured properties. The obtained results were related to fractography and microstructural analysis. While a combination of trans-particle and inter-particle fracture determined the fatigue properties in the near-threshold regime, at higher loads, inter-particle fracture was dominant. It was also shown that the different particle-to-stress orientations influenced the resulting fatigue and static properties.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 131-138, May 24–28, 2021,
Abstract
View Paper
PDF
Diamond-reinforced composites prepared by cold spray are emerging materials simultaneously featuring outstanding thermal conductivity and wear resistance. Their mechanical and fatigue properties relevant to perspective engineering applications were investigated using miniature bending specimens. Cold sprayed specimens with two different mass concentrations of diamond 20% and 50% in two metallic matrices (Al – lighter than diamond, Cu – heavier than diamond) were compared with the respective pure metal deposits. These pure metal coatings showed rather limited ductility. The diamond addition slightly improved ductility and fracture toughness of the Cu-based composites, having a small effect also on the fatigue crack growth resistance. In case of the Al composites, the ductility as well as fatigue crack growth resistance and fracture toughness have improved significantly. The static and fatigue failure mechanisms were fractographically analyzed and related to the microstructure of the coatings, observing that particle decohesion is the primary failure mechanism for both static and fatigue fracture.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 398-405, May 11–14, 2015,
Abstract
View Paper
PDF
Many applications of thermally sprayed coatings call for increased fatigue resistance of coated parts. Despite the intensive research in this area, the influence of coating on fatigue is still not completely understood. In this paper, the spatiotemporal localization of crack initiation and the dynamics of crack propagation are studied. The resonance bending fatigue test is employed to test flat specimens with both sides coated. Hastelloy-X substrates coated with classical TBC YSZ/NiCoCrAlY composites were tested. The strain distribution on the coating surface is evaluated by the digital image correlation method (DIC) through the whole duration of the fatigue test. Localization of crack initiation sites and the mode of crack propagation in the coated specimen are related to the observed resonance frequency. The individual phases of specimen degradation, i.e. the changes of material properties, crack initiation, and crack propagation are identified. The tested coatings strongly influenced the first two phases, the influence on the crack propagation was less significant.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 577-581, May 21–23, 2014,
Abstract
View Paper
PDF
This study investigates the development of fatigue failure in steel specimens coated by various spraying methods with and without grit blasting. Commercial titanium powder was deposited on structural steel substrates by low-pressure and portable cold spray as well as plasma and warm spray. Coating samples were subjected to strain-controlled cyclic bending, while monitoring resonant frequency as a measure of accumulated damage. A change in frequency of 4 Hz was chosen as the test-stop with the corresponding cycle count serving as the main indicator of fatigue life. Test results are presented in the paper along with explanations of fatigue mechanisms and process-related factors.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 880-885, May 21–23, 2014,
Abstract
View Paper
PDF
The fatigue performance of conventional structural steel with an applied thermal barrier coating (TBC) was evaluated via cyclic bending. Tests were carried out for as-received and grit-blasted substrates as well as for samples with thermally sprayed bond coats and topcoats. Failure mechanisms were identified and changes in fatigue resistance were assessed based on results obtained for different loading amplitudes supplemented by fractographic analysis.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 914-919, May 4–7, 2009,
Abstract
View Paper
PDF
This study investigates the mechanical response of plasma-sprayed ceramic coatings to different levels of mechanical and thermal loading. Test samples were subjected to four-point bending and thermal cycling loads. Nonlinear behavior and significant hysteresis were observed, indicative of inelastic phenomena. Previous tests were complemented by structural examinations and bonded-interface testing. Relevant structural features and possible mechanisms underlying this behavior are discussed.
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 727-732, May 14–16, 2007,
Abstract
View Paper
PDF
To prepare a dense, defect-free deposit of refractory metals relies not only on the droplets’ state, their temperature and velocity prior to impact on the surface of substrate and/or the precedent deposited layer, but also on the surface temperature of the substrate, whereupon the droplets impact. This paper presents a comprehensive investigation, in which the particles temperature, velocity, and the substrate temperature are studied all-in-one step to understand their influence on the deposit quality. The experimental results make our knowledge of the induction plasma spray of refractory metals process more integrated. Based on our estimation on the effect of all of the three factors, a set of optimized process parameters was established and proved by applying it in producing stationary deposits and coating layers. The results obtained distinguish the induction plasma spray a unique technique, which is ideal to be utilized in refractory metals deposit.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1161-1166, May 15–18, 2006,
Abstract
View Paper
PDF
Thermal spray is a flexible technique enabling deposition of wide choice of feedstock materials including ceramics, metals or the mixture of both. Various spray technologies are available, such as different types of thermal plasma methods, electric arc based methods, HVOF and other combustion methods. Obviously, the fatigue properties of coated bodies will differ based on the choice of feedstock material and on the spray technology used. Comparison was made of fatigue properties of bodies with Alumina, Ni-5wt%Al and composite coatings produced by gas and water stabilized plasma spray. It has been found, for instance, that Alumina coatings sprayed by water stabilized plasma torch (WSP) had substantially increased fatigue life times of specimens compared to specimens with coatings of the same feedstock deposited by the gas stabilized plasma torch. Measured fatigue data were related to a detailed structural characterization of the tested coatings. Obtained results are discussed with regard to our previous results obtained during fatigue tests of specimens with one-component coatings.
Proceedings Papers
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 143-147, May 10–12, 2004,
Abstract
View Paper
PDF
Thermal spray coatings exhibit a wide variety of microstructural characteristics that lead to variation in their functional properties. A complete understanding of the plasma spray process includes examination of the particle-flame interaction, particle impact (to form the splats), and the particle-substrate interaction during coating deposition. The links between these process parameters and coating properties has been established by using diagnostic tools in conjunction with a splat collection shutter and an in-situ curvature measurement instrument. In this study, a commercial grade molybdenum (Mo) powder was plasma sprayed; the spray stream was characterized in relation to the resulting particle state. A "splat map" was deposited through a "spray stream guillotine" to capture the fingerprint of the plume cross section. Subsequently, coatings were deposited at these spray conditions on a newly developed in-situ curvature measurement instrument to measure coating stresses and to estimate the coating modulus. Splats and coatings were subsequently characterized by micro-diffraction (for splat residual stresses), by nano and micro-indentation for elastic and elastic-plastic properties, and by electron microscopy. This complete history of the process followed by splat and coating characterization provides insight into the correlation between processing parameters, resultant particle states, and final coating properties. The role of particle temperature and velocity on the splat (and coating) morphology and residual stress is explained in the results.
Proceedings Papers
ITSC 2003, Thermal Spray 2003: Proceedings from the International Thermal Spray Conference, 1379-1386, May 5–8, 2003,
Abstract
View Paper
PDF
Fatigue behavior and Young’s modulus of plasma sprayed gray alumina on low-carbon steel substrates were investigated. The investigation of the properties of composite material “coating-substrate” included the measurements of microhardness profile, residual stress on the top of the coating and residual stress profile in substrate. Fatigue samples were periodically loaded as a cantilever beam on a special testing machine. Failed samples were observed in SEM to determine failure processes in the coating. The Young’s modulus of the coating was measured by the four-point bending method. Samples were tested both in tension and compression at low (300 N) and high (800 N) loads. Our experiments revealed that the average fatigue lives of coated specimens were nearly 2 times longer than those of the uncoated specimens. The Young’s modulus of the coating varied between 27 and 53 GPa with an average value of 43 GPa. Loading in tension caused decrease in Young’s modulus of the coating while loading in compression lead to increase in Young’s modulus. Increase in the lifetime of coated samples was likely due to compressive residual stresses in the substrate, originating from the spray process. Failure of the coating consisted of several processes, among which the most important are splat cracking, splat debonding and coalescence of cracks through the voids in the coating.