Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
O. Cevher
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 276-281, June 2–4, 2008,
Abstract
View Paper
PDF
Ductile iron pipes (DIP) have been used worldwide since 1960s for water transmission and distribution mains. By 1979, ductile iron pipe largely replaced cast iron as the predominant material in water industry. Zn and Zn/Al 85/15 coatings applied by thermal spray technique are used for the protection of the ductile iron pipe against corrosion in heterogeneous soil conditions. In this study, heat treated and non-heat treated ductile iron pipe samples were coated with Zn and Zn/Al 85/15 in optimum spray parameters by twin wire electric arc (TWEA) spraying technique. The coatings were investigated by optical microscopy, scanning electron microscopy (SEM), and analyzed by energy dispersive spectrometer (EDS). Both Zn and Zn/Al 85/15 coatings showed fairly good lamellar structure with acceptable amount of internal porosities and oxides. Annealing oxides available on pipe surface helped the bonding of coatings. The protection performance of the coatings was compared with accelerated corrosion (salt spray) test according to the ASTM B 117 and corrosion products were analyzed by SEM and EDS technique. Salt spray test results showed that Zn/Al 85/15 coatings have better corrosion resistance than Zn coatings and annealing oxide on ductile iron pipe acts as a good corrosion resistant protective layer.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1144-1146, June 2–4, 2008,
Abstract
View Paper
PDF
Twin wire arc sprayed Zn, Al and Zn/Al 85/15 coatings were investigated for comparison of their corrosion resistance, electrochemical behavior. The Zn, Al and Zn/Al 85/15 coatings possess prominent electrochemical passivation behavior. Oxide formation mainly onto the coating surfaces were identified with energy-dispersive X-ray analysis and were believed to be responsible for the passivation phenomena observed in the electrochemical polarization. Zn and Al are more negative in electrochemical potential than iron. Zn coatings act as a sacrificial anode and providing cathodic protection. Aluminum shows passive corrosion protection according to stable oxide layer occurs on coating surface. Zn/Al 85/15 coating show two corrosion protection mechanisms together. In this study, steel samples were coated with Zn, Al and Zn/Al 85/15 in optimum conditions by wire arc spraying technique. These coatings were investigated behaviors of polarization and corrosion resistance with electrochemical test.