Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-7 of 7
Nicholas Curry
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 139-151, April 29–May 1, 2024,
Abstract
View Paper
PDF
In this study, the in-situ technique was used to observe crack formation and growth in multilayer suspension plasma spray (SPS) thermal barrier coatings (TBCs). Utilizing synchronized three-point bending (3PB) and scanning electron microscopy (SEM), coupled with digital image correlation (DIC), we provide real-time insights into strain field dynamics around cracking zones. Bending-driven failure was induced in both single and composite-layer SPS coatings to investigate the crack behavior in these columnar-structured multilayer TBCs. The real-time observations showed that columnar gaps can facilitate crack initiation and propagation from the coatings' free surface. The composite-layer SPS coating exhibits lower susceptibility to vertical cracking than the single-layer SPS coating, possibly due to the presence of a gadolinium zirconate (GZ) dense layer at the coating's free surface that enhances the bonding strength within the coating's columnar structure. The splat structure of the bond coat (BC) layer contributes to the crack path deflection, thereby potentially improving the SPS coating' fracture toughness by dissipating the energy required for crack propagation. Moreover, it was revealed that grit particles at the BC/substrate interface seem to promote crack branching near the interface, localized coating delamination, and serve as nucleation sites for crack development. Hence, optimizing the grit-blasting process of the substrate before BC layer deposition is crucial for minimizing the possibility of crack formation under operational conditions, contributing to enhanced durability and prolonged lifespan. This study underscores the critical role of in-situ observation in unravelling the complex failure mechanisms of multi-layered coatings, paving the way for the design of advanced coatings with enhanced structural complexity and improved performance for more extreme environments.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 71-78, May 26–29, 2019,
Abstract
View Paper
PDF
In this study, different sets of plasma-sprayed YSZ thermal barrier coatings were deposited via Ar/H 2 and N 2 /H 2 plasmas and compared based on deposition efficiency (DE), thermal conductivity (TC), and furnace cycle testing (FCT). The top-performing coatings exhibited equivalent FCT lifetimes with TC values in the range of 1.15-1.25 W/mK at 1200 °C, but the deposition efficiency of those produced with N 2 /H 2 plasma was twice as high, resulting in a 55% reduction in production costs.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 678-681, May 26–29, 2019,
Abstract
View Paper
PDF
Deposition efficiency is an important metric for thermal spraying, but it can be difficult to measure in some cases. In this study, a volume-based deposition factor is developed that can be used to estimate deposition efficiency simply by evaluating process parameters, coating thickness, and porosity. Coating thickness or thickness per pass is measured from the sample and parameters like feed rate, step size, and surface speed are taken into account. The correlation to deposition efficiency is demonstrated for various plasma and HVOF processes using powder and suspension feedstock materials. An example is also given showing how the method can be used to evaluate older data sets collected without regard to deposition efficiency.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 8-15, May 7–10, 2018,
Abstract
View Paper
PDF
The current investigation focuses on understanding the influence of a columnar microstructure and a sealing layer on the corrosion behavior of suspension plasma sprayed (SPS) thermal barrier coatings (TBCs). Two different TBC systems were studied in this work. First is a double layer made of a composite of gadolinium zirconate + yttria stabilized zirconia (YSZ) deposited on top of YSZ. Second is a triple layer made of dense gadolinium zirconate deposited on top of gadolinium zirconate + YSZ over YSZ. Cyclic corrosion tests were conducted between 25 °C and 900 °C with an exposure time of 8h at 900 °C. 75 wt. % Na 2 SO 4 + 25 wt.% NaCl were used as the corrosive salts at a concentration of 6 mg/cm 2 . Scanning electron microscopy analysis of the samples’ cross-sections showed that severe bond coat degradation had taken place for both TBC systems and the extent of bond coat degradation was relatively higher in the triple layer system. It is believed that the sealing layer in the triple layer system reduced the number of infiltration channels for the molten salts which resulted in overflowing of the salts to the coating edges and caused damage to develop relatively more from the edge.
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 79-83, May 7–10, 2018,
Abstract
View Paper
PDF
Thermal barrier coatings (TBCs) play a vital role in allowing the gas turbine engines to operate at high temperatures. With higher operating temperatures (>1200°C), the standard TBC material, 7-8wt. % Yttria Stabilized Zirconia (YSZ), is susceptible to CMAS (Calcium Magnesium Alumino Silicates) degradation and undesirable phase transformation. New TBC materials such as gadolinium zirconate (GZ) have shown to be capable of overcoming the challenges faced by YSZ. However, GZ has inferior fracture toughness relative to YSZ. In this work, three double layered TBC variations with different GZ and YSZ thickness respectively (400GZ/100YSZ, 250GZ/250YSZ and 100GZ/400GZ respectively, where the prefix numbers represent thickness in ìm) were produced by suspension plasma spray (SPS) process. In all the three double layered TBC variations, the overall TBC thickness with GZ as the top layer and YSZ as the base layer was kept the same (500 μm). The objective was to investigate the influence of YSZ thickness on the thermal cyclic fatigue performance of GZ/YSZ double layered TBC. The as sprayed TBCs were characterized by SEM, XRD and porosity measurements and later subjected to thermal cyclic fatigue test at 1100°C. It was observed that the GZ/YSZ double layered TBC with lowest YSZ thickness (400GZ/100YSZ) showed higher thermal cyclic lifetime whereas the TBC with thicker YSZ layer (100GZ/400YSZ) showed lowest thermal cyclic fatigue lifetime. The failure analysis of the thermally cycled TBCs revealed similar failure modes, i.e. spallation of the top coat due to horizontal crack propagation within the thermally grown oxide (TGO). Furthermore, the ceramic top coats in all the three TBC variations after failure showed the widening of column gaps.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 406-412, May 11–14, 2015,
Abstract
View Paper
PDF
Our previous experiments with low-cost steel substrates confirmed that individual steps of conventional thermal barrier coating (TBC) deposition may influence fatigue properties of the coated samples differently. In this study, testing was carried out for TBC samples deposited on industrially more relevant Hastelloy X substrates. Samples were tested after each step of TBC deposition process: as-received (non-coated), grit-blasted, bond-coated (NiCoCrAlY) and bondcoated + top-coated (yttria-stabilized zirconia - YSZ). Conventional atmospheric plasma spraying (APS) with gas stabilized plasma torch was used for deposition of both bond coat and top coat. In addition, for one half of the samples, bond coat was prepared by consecutive combination of HVAF (High Velocity Air Fuel) and APS processes. Samples were tested both in as-sprayed condition and after 100 hours annealing at 980 °C, which simulated in-service conditions. Obtained results showed that different fatigue performance may be expected for various stages of the TBC deposition as well as due to the variation of the deposition process and sample temperature history.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 498-505, May 11–14, 2015,
Abstract
View Paper
PDF
Suspension Plasma Spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings. This technique enables the production of a variety of structures from highly dense, highly porous, segmented or columnar coatings. In this work a comparative study is performed on six different suspension plasma sprayed thermal barrier coatings which were produced using axial injection and different process parameters. The influence of coating morphology and porosity on thermal properties was of specific interest. Tests carried out include microstructural analysis with SEM, phase analysis using XRD, porosity calculation using Archimedes experimental setup, pore distribution analysis using mercury infiltration technique and thermal diffusivity/conductivity measurements using laser flash analysis. The results showed that columnar and cauliflower type coatings were produced by axial suspension plasma spraying process. Better performance coatings were produced with relatively higher overall energy input given during spraying. Coatings with higher energy input, lower thickness and wider range of submicron and nanometer sized pores distribution showed lower thermal diffusivity and hence lower thermal conductivity. Also, in-situ heat treatment did not show dramatic increase in thermal properties.