Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Ng Hui Peng
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 250-254, November 9–13, 2014,
Abstract
View Papertitled, Effective and Efficient FEOL Defects Localization/Inspection by Selective Mechanical/Chemical Deprocessing
View
PDF
for content titled, Effective and Efficient FEOL Defects Localization/Inspection by Selective Mechanical/Chemical Deprocessing
With the rapid development of semiconductor manufacturing technologies, IC devices evolve to smaller feature sizes and higher densities, and thus the task of performing successful failure analysis (FA) is becoming increasingly difficult. Device miniaturization often requires high spatial resolution fault isolation and physical analysis [1]. To cater to the shrinking of devices, extensive process improvements have been conducted at the front-end-of-line (FEOL) structures. As a result, among the numerous types of defects leading to chip failure, FEOL defects are becoming more common for devices of advanced tech nodes [2]. Therefore, it becomes more complexity and difficulty on searching the physical defect. Sample preparation is a key activity in material and failure analysis. In order to image small structures or defects it is often necessary to remove excess material or layers hiding the feature of interest. Removing selected layers to isolate a structure is called delayering. It can be accomplished by chemical etching using liquid or plasma chemistry, or by mechanical means, by polishing off each unwanted layer.
Proceedings Papers
ISTFA2012, ISTFA 2012: Conference Proceedings from the 38th International Symposium for Testing and Failure Analysis, 370-374, November 11–15, 2012,
Abstract
View Papertitled, Failure Analysis Methodology on Systematic Defect in N+ poly/NWELL Varactor in RF Analog_PLL due to Implanter Charging Issue
View
PDF
for content titled, Failure Analysis Methodology on Systematic Defect in N+ poly/NWELL Varactor in RF Analog_PLL due to Implanter Charging Issue
In this paper, a zero yield case relating to a systematic defect in N+ poly/N-well varactor (voltage controlled capacitor) on the RF analog circuitry will be studied. The systematic problem solving process based on the application of a variety of FA techniques such as TIVA, AFP current Imaging and nano-probing, manual layout path tracing, FIB circuit edit, selective etching together with Fab investigation is used to understand the root cause as well as failure mechanism proposed. This process is particularly critical for a foundry company with restricted access to data on test condition setup to duplicate the exact failure as well as no layout tracing available at time of analysis. The systematic defect was due to gate oxide breakdown as a result of implanter charging. It serves as a good reference to other wafer Fabs encountering such an issue.