Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Neil J. Bassom
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 255-261, November 14–18, 1999,
Abstract
View Paper
PDF
Wide variations in the dose enhancement factor observed when milling silicon using Focused Ion Beam (FIB) XeF2 Gas Assisted Etching (GAE) prompted the development of a simple model of the GAE process. The model accounts for three material removal mechanisms: regular sputtering; gas-assisted sputtering; and spontaneous chemical reactions. An expression linking the dose enhancement factor, εd, to the gas and milling parameters has been derived. Experiments show that εd behaves as predicted; good quantitative agreement is achieved over wide ranges of milling parameters for εd values between 20X and 2500X. Conditions required to minimize variations in d and maximize material removal rates, M, are derived. It is shown that if the dose per unit area per raster is below a threshold value then εd and M depend only on the average current density J (the area of the box divided by the beam current). A consideration of the J regimes used for front-side and back-side FIB work shows why changes in εd have not previously been a problem but are inevitable when milling the large trenches characteristics of Flip Chip circuit modification work. While εd changes dramatically there is a region of J values for which M is approximately constant.