Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
N.J. Themelis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 1207-1212, May 4–7, 2009,
Abstract
View Papertitled, LCA Comparison of Electroplating and Other Thermal Spray Processes
View
PDF
for content titled, LCA Comparison of Electroplating and Other Thermal Spray Processes
This paper presents a life cycle assessment comparison of electroplating and various thermal spray processes for the formation of nickel coatings. The comparison was carried out using a peer-reviewed database of upstream materials and energy and commercial LCA software. Material and energy use and the corresponding emissions of each coating process were converted to impact scores by means of the Eco-Indicator-99 method.
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 793-798, March 17–19, 1999,
Abstract
View Papertitled, Modeling of Simultaneous Plasma Spraying of Two Powders
View
PDF
for content titled, Modeling of Simultaneous Plasma Spraying of Two Powders
This paper presents a simulation of the simultaneous spraying of a metal and a ceramic powder with different configurations for the injection of the powder into the plasma jet. The plasma jet and the behavior of the injected particles were modeled with a commercially available computational model of the dynamics of liquid bodies. The particles are modeled as discrete Lagrangian objects. Three series of numerical tests were carried out: simultaneous spraying of the powder in a three-dimensional plasma jet in a stable state; simulation of the 3-D plasma flow, assuming that it fluctuates at the same frequency as the arc voltage; and simulation of the effect of the current fluctuation on particle behavior. A pre-calculation with an analytical model made it possible to determine the suitable gas flow rate so that the "average" trajectories of the metal or ceramic powders coincide at the same point on the surface. Paper includes a German-language abstract.
Proceedings Papers
ITSC1997, Thermal Spray 1997: Proceedings from the United Thermal Spray Conference, 557-565, September 15–18, 1997,
Abstract
View Papertitled, Computational Analysis of a Three-Dimensional Plasma Spray Jet
View
PDF
for content titled, Computational Analysis of a Three-Dimensional Plasma Spray Jet
An analysis of a d.c. plasma jet is presented using a three-dimensional commercial fluid dynamics code, ESTET. This code solves the coupled conservation equations of mass, species, momentum and thermal energy equations for a compressible and turbulent fluid in control volume and finite difference formulation. Computations take into account fluid turbulence using a standard k-s model with the Launder and Sharma correction for the laminar zones, e.g. the plasma core. Two series of spraying conditions differing in the total gas flow rate (30 and 60 slm) and the arc current (300 and 600 A, respectively) are computed. The process parameters are independently varied about the nominal operating conditions. The effect of the variation of primary and secondary gas flow rate, effective power and powder carrier gas flow rate on flow fields characteristics, is discussed.