Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
N. Serres
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 1424-1429, September 27–29, 2011,
Abstract
View Paper
PDF
In this work, a LCA based on Eco-indicator 99 methodology was used to compare the environmental impacts and benefits of thermal spraying (including APS, HVOF, Flame and Cold Spray) carried out with materials which could be used in application to resist against wear and/or corrosion. The comparison was carried out using the SimaPro 7.2 software, and it was focused on all stages necessary to build the coating, i.e. extraction of raw materials, production of powder, transport, surface preparation, thermal spray operating, until the end of life, as well as emissions (solid, liquid and gaseous) at each stage of a process. As a major result, it appears that the lifetime of the coatings plays a high role. If a coating needs to be regularly replaced or if failure of the coating decreases the lifetime of the component, this almost impact on the LCA. Moreover, there is an influence on the nature of the resources used to build the coating, as well as on the end of life strategies.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 532-536, September 27–29, 2011,
Abstract
View Paper
PDF
The aim of this paper is to propose a LCA comparison of different surface preparation processes (degreasing + sandblasting, laser ablation and laser texturing) which tend to be used before thermal spray. The SimaPro software was used and the needs of materials, the energy and the corresponding emissions of each process, were converted to impact scores on human health, ecosystems, and resource conservation (fossil and mineral resources) by mean of the Eco-Indicator-99 method. Laser pretreatments processes present a very good environmental behaviour in comparison with degreasing + sandblasting.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 283-288, May 3–5, 2010,
Abstract
View Paper
PDF
This paper deals with coating alternatives to hard chromium plating. Indeed, thermal spraying is already used in industry, but results are not always satisfactory for reasons of porosity and microstructures. In this study, atmospheric plasma spraying (APS) and in situ laser irradiation by diode laser processes were combined to modify the structural characteristics of thick NiCrBSi alloy layers. The microstructure evolution was studied and results show that in situ laser remelting induces the growth of a dendritic structure which strongly decreases the porosity of as-sprayed coatings and increases the adhesion on the substrate. Moreover, no phase transition after laser treatment is observed. At least, a mechanical investigation demonstrates that the combination between the plasma spraying and in situ melting with a diode laser can result in the improvement of mechanical properties. The hybrid process appears to be a possible alternative to hard chromium plating, in order to protect mechanical parts, because of the good mechanical behaviour of NiCrBSi layer. Moreover, the increase of the laser incident power causes an increase of the mean contact pressure, along with coatings hardness.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 662-668, May 3–5, 2010,
Abstract
View Paper
PDF
Pressure to identify alternatives to hard chromium electroplating has increased these few last years, related to environmental requirements, because of the use of hexavalent chromium, a highly toxic substance. The plasma spray technique allows the formation of thick coatings which present moderate adhesion to the substrate and show porosity and formation of oxide interlayers, which impairs to obtain full benefits of the coatings properties. In this sense, a treatment can be necessary to improve the properties of these coatings. In this paper, the effect of an in situ laser melting treatment of NiCrBSi coatings, deposited by plasma spraying was investigated. It is demonstrated by a Life Cycle Assessment (LCA) that this process is clean. Moreover, the corrosion resistance of as-sprayed and in situ remelted layers was evaluated by potentiodynamic polarization curves. The corrosion resistance was increased because of the finer structure and higher densities of the coatings, nevertheless, corrosion mechanisms occurring in all cases are different.
Proceedings Papers
ITSC 2009, Thermal Spray 2009: Proceedings from the International Thermal Spray Conference, 1084-1089, May 4–7, 2009,
Abstract
View Paper
PDF
The aim of this study is to propose coatings that could potentially replace hard chromium as a means of corrosion and wear protection. Two NiCrBSi coatings are evaluated, one produced by laser cladding, the other by atmospheric plasma spraying with a post-laser treatment. Although laser-clad NiCrBSi exhibits the best technical properties, the APS coatings were found to be more environmentally justifiable based on the use of life cycle assessment (LCA) software.