Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
N. Schlegel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Columnar Structured Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)
Available to Purchase
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 113-118, May 21–23, 2014,
Abstract
View Papertitled, Columnar Structured Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)
View
PDF
for content titled, Columnar Structured Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)
In this study, a suspension containing Mg-Al-spinel nanopowder was deposited on bond-coated IN738 and stainless steel disks by suspension plasma spraying with and without substrate cooling. Coating surfaces and cross-sections were examined by SEM, EDS, and XRD analysis and thermal cycling tests were performed. SEM images of coatings obtained on cooled stainless steel show a unique columnar microstructure with a cauliflower-like surface. XRD spectra of the nanopowder and coatings revealed evidence of phase changes in the material deposited on cooled substrates. In preparing samples for thermal cycling tests, a YSZ layer was deposited on bond-coated IN738 prior to spraying the suspension. Double-layered Mg-Al-spinel/YSZ thermal barrier coatings produced on cooled substrates exhibited a thermal cycling lifetime of 2000 cycles at 1390°C, compared to 101 cycles for the TBCs sprayed without substrate cooling. The superior performance of the TBCs sprayed with substrate cooling is attributed to the densification of the coatings, revealed by SEM images, and possibly the formation of CaO-6Al 2 O 3 needles and Al 2 O 3 precipitates as identified by EDS measurements.
Proceedings Papers
Plasma Spraying of Ceramics with Particular Difficulties in Processing
Available to Purchase
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 397-402, May 21–23, 2014,
Abstract
View Papertitled, Plasma Spraying of Ceramics with Particular Difficulties in Processing
View
PDF
for content titled, Plasma Spraying of Ceramics with Particular Difficulties in Processing
This study deals with the deposition of coating materials that can be difficult to process by plasma spraying, including lanthanum and gadolinium zirconate, two pyrochlores of interest for thermal barrier applications, and lanthanum strontium cobalt ferrite (LSCF), a perovskite of interest for gas separation membranes. In addition to conventional atmospheric plasma spraying (APS), the feedstock powders were applied by suspension plasma spraying (SPS) and plasma spray-physical vapor deposition (PS-PVD). The spraying processes are described in detail along with the characteristics of the powders and coatings and the effects of various spray parameters on splat behavior and coating composition and structure.