Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
N. S. Cheruvu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 801-820, August 31–September 3, 2010,
Abstract
View Paper
PDF
Over the past two decades there has been considerable interest in the development of coatings with finer microstructures approaching nanometer scale because these coatings are more resistant to high-temperature oxidation and corrosion than their counterpart conventional coatings. Long-term cyclic oxidation behavior of nanocrystalline FeCrNiAl and NiCrAl coatings were evaluated at different temperatures and the results showed that ultra-fine grain structure promoted selective oxidation of Al during thermal exposure. The protective Al2O3 scale formed on these coatings with Al content as low as 3 wt.% and exhibited excellent spallation resistance during thermal cycling. The nanocrystalline NiCrAl coating showed significantly higher oxidation resistance compared to the conventional plasma sprayed NiCoCrAlY and PWA 286 coatings. However, the Al content in the nanocrystalline coatings was consumed in relatively short time due to inward and outward diffusion of Al. Variation of oxide-scale spallation resistance during thermal cycling and the rate of Al consumption between the nanocrystalline and plasma sprayed coatings are compared.