Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
N. Kawano
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 607-612, May 3–5, 2010,
Abstract
View Paper
PDF
In this study, we investigated microstructures of thermal sprayed coatings and single deposited splats using two types of ion beam milling: one is argon ion beam for the cross-sectioning of thermal sprayed coatings in a cross section polisher, the other is gallium focused ion beam for the cross-sectioning and TEM sample preparation of single deposited splats. The cross section of WC-Co coatings fabricated by the polisher showed that it created a mirrored surface with minimizing artifacts such as pull-outs of ceramic particles or smearing of pores during conventional metallographic preparations. A thin and locally re-thinned membrane of single warm-sprayed nickel splat was feasible to observe the internal interface of particle/substrate in high resolution electron images. The substrate was heavily deformed by the impact of nickel particle with high kinetic and thermal energies. The particle and the substrate were intimately bonded without any voids or gaps.