Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
N. Fenineche
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1108-1113, June 2–4, 2008,
Abstract
View Paper
PDF
The cold gas dynamic spray process, or cold spraying (CS), represents a radical departure from conventional thermal spray (TS) methods in that the deposition process relies purely on kinetic energy rather than on a combination of thermal and kinetic components. A potential advantage of this process over TS is the ability to generate dense coatings retaining initial material chemistry and phase composition with a very little oxidation. Also, low temperature process (no bulk particle melting) eliminates solidification stresses and enables thicker coatings. However, hard brittle materials like ceramics can not be sprayed without using ductile binders. In this study, magnetic alloys such as FeSiBNbCu also called Finemet and FeSiBNbCu-Al with various percentages of Aluminum coatings were synthesized using cold spray technique in order to produce ferromagnetic materials. Ultra-fine grain coatings were obtained using FINEMET nanostructured powders mixed with Aluminum as ductile binder in order to improve adherence. Magnetic measurements revealed a soft magnetic character for all the powders and the coatings. 25% of Al was considered as ideal to produce a homogenous coating with suitable magnetic properties.